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Abstract of the Dissertation

Terahertz Time-Domain Spectroscopy

of High-Tc Superconductors

by

Verner Kristian Thorsmølle

Doctor of Philosophy in Physics

University of California, Los Angeles, 2001

Professor Stuart E. Brown, Chair

The c-axis Josephson plasma resonance (JPR) in high-Tc cuprate Tl2Ba2CaCu2O8

(Tl-2212) superconducting thin films is unambiguously observed directly in the

time-domain employing terahertz time-domain spectroscopy in transmission as a

function of temperature with and without an applied c-axis magnetic field. These

are the first observations of the JPR in a high-Tc material in transmission. The

temperature dependence of the JPR in zero field indicates d-wave symmetry of

the superconducting order parameter in the dirty limit. In a c-axis magnetic

field, the JPR is sensitive to the ordering of pancake vortices along the c-axis

and is an excellent tool to study the vortex structure. Using the JPR to study

the interlayer phase coherence, I find direct evidence for a linelike vortex liquid

phase in Tl-2212. The ordering of the vortex lattice is studied as a function

of applied ab-plane current at different temperatures in a c-axis magnetic field.

The ordering decreases with increased current in the vortex solid phase, but then

increases when driving it into the flux-flow state near the melting transition.

Using dc transport measurements the c-axis resistivity in irradiated and pris-
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tine Bi2Sr2CaCu2O8−δ is measured as a function of in-plane field component at

fixed out-of-plane component B⊥ in the vortex liquid phase. The average length

of vortex line segments inside columnar defects as a function of filling factor

f = B⊥/BΦ is then determined. The maximum length, ∼15 interlayer distances,

is reached near f ≈ 0.35.

Time-resolved optical-pump terahertz-probe spectroscopy is employed to mea-

sure ultrafast conductivity dynamics in hole-doped transition metal oxide thin

films. Measurements on La0.7M0.3MnO3 (M = Ca, Sr) from 10 K to ∼0.9Tc re-

veal a two-component relaxation. A fast, ∼2 ps, conductivity decrease arises from

optically induced modification of the effective phonon temperature. The slower

component, related to spin-lattice relaxation, has a lifetime that increases upon

approaching Tc from below in accordance with an increasing spin specific heat.

For T � Tc, ∂σ/∂T is primarily determined by thermally disordered phonons

while spin fluctuations dominate near Tc. For YBCO thin films, optical-pump

terahertz-probe spectroscopy was used to study the dynamics of superconducting

pairs and quasiparticles following photoexcitation. In particular, by following the

dynamic changes of the imaginary conductivity, the phase coherent recovery time

was directly measured. This recovery occurs on a picosecond timescale.
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CHAPTER 1

General Introduction and Outline

The discovery of superconductivity at the surprisingly high temperature of 34 K in

1986 [5] in the Ba-La-Cu-O system by J. G. Bednorz and K. A. Müller launched

a major breakthrough in material science. An enormous world wide research

effort followed in the quest of a room temperature superconductor, and the high-

Tc era had begun. Within the following year, the critical temperature (Tc) was

raised to 92 K with the discovery of the yttrium compound [6, 7]. In 1988, the

critical temperature was further increased to 120 K and 125 K with the successive

discoveries of the bismuth [8] and thallium [9] cuprates. The current record holder

is the mercury cuprate, Hg2Ba2Ca2Cu3O10−δ with Tc = 134 K at atmosperic

pressure, and 164 K when subjected to high pressure [10]. It should be mentioned

that high-Tc superconductivity has also been found in other types of compounds,

such as the cubic perovskite BaKBiO with Tc ≤ 34 K [11], and sodium doped

WO3 with Tc = 90 K [12]. The most recent discovery of superconductivity is

in the metallic compound MgB2 with Tc = 39 K [13], which greatly exceeds

Tc = 23.2 K of Nb3Ge (1973), the previous highest Tc in a conventional metallic

superconductor.

In parallel with the ongoing discoveries of new high-Tc superconducting ma-

terials many important and imaginative industrial applications have been sug-

gested, including high-field magnets, loss-free electrical power transmission, high-

efficiency motors, computer logic gates, high-sensitivity superconducting quan-
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Figure 1.1: Crystal structure of YBa2Cu3O7 superconducting compound. The unit
cell consists of two CuO2 planes with a Y ion in between. The third copper oxide
plane consists of -Cu-O-Cu-O chains along the b-axis (chains are not pertinent to other
superconducting compounds).

tum interference devices, levitated trains, etc. [14]. Critical temperatures now

above the boiling temperature of liquid nitrogen has further put the hope for

technical applications into reach.

A variety of experimental techniques have been developed to measure the

properties of the high-Tc superconducting materials and to gain an understand-

ing of why they superconduct at such high temperatures. The original McMillan

formula (1968) for the critical temperature, derived in the BCS theory, with

a phonon mediated electron-electron attractive interaction (and taking into ac-

count Coulomb repulsion), predicts Tc ≤ 25 K. It came as a surprise when this
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temperature was exceeded with the new ceramic high-Tc superconductors.

High-Tc superconducting cuprates are layered perovskites. They have layered

structures with some two-dimensional behavior (see Figure 1.1). The essential

structural element is one or more copper oxide planes per unit cell. The interlayer

coupling between the CuO2 planes is very weak and these materials exhibit highly

anisotropic properties, and fluctuation effects are prominent.

Charge reservoir layers above and below the CuO2 planes can accept or donate

electrons to the CuO2 planes via chemical substitution of different-valence ions

(e.g. La2−xSrxCuO4), changing the oxygen stoichiometry - oxygen doping (e.g.

YBa2Cu3O7−δ), ion substitution with isovalent ions of different ionic radius, or

by a combination. The majority of high-Tc superconductors are hole-doped. A

schematic diagram of a hole doped high-Tc superconductor is shown in Figure

1.2.

The undoped parent compound is, below the Néel temperature TN , an anti-

ferromagnetic insulator. TN decreases with increasing hole doping p (measured

in holes per Cu ion in CuO2 plane) and the long range antiferromagnetic order

vanishes at p ∼ 0.05. The material exhibits superconductivity at low tempera-

tures in the doping range 0.05 <∼ p <∼ 0.25. The maximum critical temperature

is obtained at optimum doping near p ∼ 0.15 depending slightly on the particu-

lar compound. Below and above this doping level the compound is respectively

under- and overdoped. The superconductivity vanishes for p >∼ 0.25 and the mate-

rial becomes metallic like. Several experiments which probe the density of states

(DOS) near the Fermi surface (EF ) suggest an opening of a pseudogap signaled

by a suppression in the DOS. The openening of the pseudogap is denoted by the

crossover temperature T ∗ as determined by various experimental techniques [15].

Superconductivity can be destroyed not only by thermal fluctuations when in-
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Figure 1.2: Schematic phase diagram of high-Tc superconductors. The abbreviations
mean antiferromagnetic insulator (AF), and superconductor (SC). TN is the Néel tem-
perature, and T ∗ is the pseudogap crossover temperature.

creasing the temperature through Tc but also by applying a high enough magnetic

field or strong electric current. An applied c-axis magnetic field induces a vortex

lattice in a high-Tc superconductor in the mixed-state which responds to changes

in temperature and to applied currents. The mixed-state phase comprises the su-

perconducting region in which magnetic flux penetrates the high-Tc superconduc-

tor in the form of quantized vortices above the Meissner phase. The mixed-state

magnetic phase diagram of high-Tc superconductors displays a variety of different

phases, including the vortex solid phase, Bose glass phase, pancake liquid phase,

etc. as illustrated in the B-T phase diagrams in Figure 1.3. The physical proper-

ties of the vortex phase diagram is strongly determined by the anisotropy of the

superconductor. In yttrium compounds, which have a low degree of anisotropy,

the vortex lines are continuous and the critical current density is substantial in
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Figure 1.3: Illustration of the mixed-state magnetic phase diagram for (a) a pristine
crystal and (b) an irradiated crystal.

a large portion of the phase diagram. In the most anisotropic superconductors

such as the bismuth-, thallium-, and mercury-based High-Tc superconductors, the

superconductivity is confined to the CuO2 layers, and the vortex lines are broken

into two-dimensional “pancake vortices” in the layers, which are weakly coupled

by Josephson interactions and by magnetic interactions. Such a vortex lattice of

pancake vortices has close to long-range order at low magnetic fields and temper-

atures, where the pancake vortices form aligned stacks (vortex lines). However,

the interactions are very weak and these vortex lines are easily destroyed due

to misalignment of the pancake vortices by either thermal fluctuations at higher

temperatures, or by defects in the underlying crystal lattice.

Vortex dynamics are of great importance in determining the transport and

magnetic properties of high-Tc superconductors. If one is to utilize high-Tc mate-

rials in the form of magnets, power cables or high-frequency filters it is important

to understand the pinning properties of vortices and the various phases in the

B-T phase diagram. Beneath the melting line or the irreversibility line in the

vortex solid phase the vortex lattice is pinned and the critical current density is
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nonzero, whereas above in the vortex liquid phase it is unpinned and the critical

current density is zero. An applied transport current will exert a Lorentz force

on the vortices causing them to move sideways if not properly pinned, which

causes resistance and dissipation. Pinning sites are naturally occuring defects in

the material in the form of impurities, grain boundaries, oxygen deficiencies, etc.

The most efficient pinning sites are created artificially by irradiating the super-

conductor with very fast heavy ions [16]. The pancake vortices are trapped on

these columnar defects which suppresses the thermal vibrations, and moves the

melting line up in phase space creating a large region with a substantial critical

current density as shown in Figure 1.3(b).

Several techniques such as transport and magnetization measurements are

readily utilized in order to study the various phases of the B-T phase diagram [17,

18]. However, measurements of the Josephson plasma resonance (JPR) by either

microwave cavity or quasioptical techniques provide unique information of the

magnetic properties as well as of the superconducting state, and can be measured

in the entire phase diagram. The JPR is a phase collective mode provided by

oscillating interlayer Josephson currents. It is sensitive to the correlations of

pancake vortices along the c-axis and is therefore an excellent tool to study the

vortex structure in high-Tc superconductors with extreme anisotropy such as the

bismuth, thallium and mercury compounds. In the absence of a magnetic field

the JPR gives information about the interlayer phase coherence [19, 20], and the

c-axis penetration depth and hence the symmetry of the order parameter [21].

Microwave cavity techniques, which generally cover a few GHz to ∼100 GHz,

are well suited to measure the JPR frequency in the most anisotropic crystals such

as underdoped Bi2Sr2CaCu2O8 [22]. However, in order to access the frequency

range of less anisotropic superconductors such as the thallium and mercury com-
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pounds, ∼150 GHz to ∼1 THz, quasioptical techniques are needed [20]. The JPR

as well as quasiparticle scattering rates of high-Tc superconductors are contained

within the THz regime, which lies between microwave and infrared frequencies,

∼50 GHz - ∼10 THz. The optical properties of high-Tc superconductors in the

THz range are easily determined using terahertz time-domain spectroscopy (THz-

TDS). The complex conductivity in the superconducting state is determined with

almost astonishing simplicity and accuracy without the need for the Kramers-

Kronig relations to extract the real and imaginary parts. Combining THz-TDS

with optical excitation one can investigate time-dependent phenomena. The sam-

ple is optically excited and the frequency-resolved conductivity is obtained as a

function of pump-probe delay time with femtosecond resolution. The induced

conductivity changes give information about the relaxation dynamics.

The dissertation is organized as follows. Chapter 2 introduces the concepts of

THz-TDS including the various elements involved in extracting the desired opti-

cal properties of the investigated material. Generation and detection techniques

of THz pulses are described, as well as the optical design of THz-TDS in trans-

mission. Chapter 2 also provides a section on time-resolved optical pump THz

probe spectroscopy, and its application to metallic systems. Chapter 3 gives an

introduction to vortex physics in high-Tc superconductors, necessary to fully ap-

preciate the subsequent JPR experiments. Chapter 3 concludes with a section on

the investigation of the structure of the vortex liquid in irradiated Bi2Sr2CaCu2O8

crystals by c-axis magnetoresistance measurements. These c-axis transport mea-

surements demonstrate an alternative technique to THz measurements of the

JPR for determining the structure and correlations in a vortex system in the

liquid phase of the magnetic phase diagram. Chapter 4 introduces the theory of

the JPR with and without a c-axis magnetic field, followed by the experimen-

tal results of the JPR. These are the first observation of the JPR in a high-Tc
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superconducting material in transmission. The strength of the JPR using THz

spectroscopy is that measurements can be obtained in the entire phase diagram,

and without causing artifacts. The experiments include angular dependence of

the JPR to study the excitation mechanism, temperature and magnetic field de-

pendence of the JPR to study the phase diagram, and the dependence of the JPR

when driving the vortex lattice with a current to study the order in the vortex

system. Using the JPR as a tool to study the interlayer phase coherence I find

direct evidence that the vortex lattice melts into a liquid of vortex lines at the

melting transition. Without a magnetic field the JPR is presented in both the

time-domain and the frequency-domain. The c-axis quasiparticle conductivity as

well as the symmetry of the order parameter is extracted from this data. Chap-

ter 5 presents time-resolved optical-pump terahertz-probe studies of hole-doped

transition metal oxides. The relaxation dynamics is studied in the high-Tc su-

perconductor YBa2Cu3O7 at different dopings. The second material investigated

is from another class of hole doped transition metal oxides, namely the mixed

valence manganites - La0.7Ca0.3MnO3 and La0.7Sr0.3MnO3.
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CHAPTER 2

Terahertz Time-Domain Spectroscopy

THz-TDS is a very powerful technique for materials studies which covers a fre-

quency range from below 100 GHz to several THz. THZ-TDS bridges the gap

between microwave and infrared techniques. The coherent generation and detec-

tion of ultrafast pulses of terahertz radiation allows for extraction of the complex

material parameters [23]. Thus, THz spectroscopy finds application in the study

of a wide variety of materials [24]. In condensed matter systems THz-TDS is

of great importance as terahertz photons are resonant with bound states such

as excitons in semiconductors, Cooper pairs in superconductors, and low energy

excitations of the hole doped transition metal oxides including high-Tc supercon-

ductors and mixed valence manganites. Importantly, tunneling and quasiparticle

scattering rates of many materials lie also in the terahertz regime. In liquids,

the terahertz regime coincides with typical time scales for intermolecular inter-

actions. Most polar gases exhibit characteristic pure rotational spectral lines in

the far infrared, and can be studied (or recognized, e.g., multiple gas sensing)

using THz-TDS. In simple dielectrics, THz-TDS provides the index of refraction

and the absorption coefficient [25]. As a final example, THz-TDS can be used to

study artificially grown structures, such as quantum wells which have confinement

energies which lie in the terahertz regime.

In spite of its importance, spectroscopy in the terahertz regime has been diffi-

cult due to a lack of efficient emitters and detectors. Fourier Transform Infrared
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spectroscopic (FTIR) techniques are limited by the lack of brightness of incoher-

ent sources and by the need for cooling of bolometric detectors. Furthermore, the

main drawback of FTIR is measuring only the power spectrum with no informa-

tion available on the spectral phase. However, THz-TDS which is a relatively new

spectroscopic technique, developed in the past 10−15 years, circumvents these

difficulties in a radical way.

2.1 Terahertz Time-Domain Spectrometers

Subpicosecond terahertz radiation can be generated and detected via opto-electro-

nic or electro-optic techniques (or a combination of both) triggered by femtosec-

ond laser pulses. Regardless of the source of radiation, the duration of these

terahertz waveforms is close to a single-cycle oscillation of the electromagnetic

field, and consequently will have a high bandwidth, spanning the spectral range

from a few tens of gigahertz to several terahertz. With an optical gating pulse

much shorter than the THz pulse, the electric field profile of the THz pulse is

directly recorded as a function of time simply by varying the delay between the

excitation and detection laser pulses. The time resolution is on the order of

a fraction of a picosecond. The signal-to-noise ratio (SNR) improves with the

square root of the repetition rate of the emitted THz pulses, and the gated de-

tection scheme improves the SNR in the opto-electronic detector by a factor of

the duty cycle of the laser system (100 fs/10 ns = 10−5) in comparison to a CW

detector, e.g. a bolometer or a photodiode. In practice, SNRs on the order of

104 to 105−times for opto-electronic detection, and at least 104 for electro-optic

detection are easily achievable with averaging times of 15−20 minutes for a to-

tal scan. Van Exter and Grischkowsky [26] have estimated an average power of

∼10 nW with a peak power 104−times higher.
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Figure 2.1: Schematic diagram of a THz-TDS spectrometer using a femtosecond laser
source and THz transmitters and receivers.

In THz-TDS the terahertz waveform is either transmitted through or reflected

by the sample, producing a reshaped waveform in accordance with the character-

istic dispersion and absorption of the sample. THz-TDS in transmission is suited

for measurements on relatively nonabsorbing samples (i.e. thin metal films less

than ∼100 nm), while measurements in reflection are preferred for highly reflect-

ing or absorbing materials. The critical measure in transmission is the precise

thickness of the sample compared to a reference. In reflection the critical measure

is the sample position compared to a reference, where a difference in optical path

length gives rise to a shift in phase between sample and reference signals. THz-

TDS in reflection will not be discussed any further as the experiments described

in this dissertation are in transmission.

Figure 2.1 shows a schematic diagram of a Terahertz Time-Domain Spectrom-

eter. It consists of (1) a femtosecond laser source, (2) a THz transmitter, (3) a
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chopper, (4) collimating and focusing optics, (5) the sample, (6) a THz detector,

(7) a variable delay line, (8) a current pre-amplifier, (9) a lock-in amplifier, and

(10) a computer. The THz transmitter radiates a THz pulse when triggered by

a laser pulse. The THz pulse is then collimated and focused onto the sample,

and the transmitted THz pulse is refocused onto the THz detector. A portion

of the laser beam is split off at the beam splitter and gates the THz detector to

measure the waveform voltage. The resulting photocurrent from the THz detec-

tor is then detected by the current pre-amplifier and the lock-in amplifier which

is referenced to the chopper. The THz detector is gated synchronously with the

THz transmitter, and by varying the variable delay line one can map out the

entire time dependent electric field of the transmitted THz pulses.

2.1.1 Photoconductive generation and detection of THz Pulses

Using ultrafast lasers for photoconductive switching was pioneered by D. H.

Austin in the 1970’s [27]. In the 1980’s these photoconductive Austin switches

were then utilized and developed further for the generation of freely propagating

THz pulses [28]. Such a high-efficiency transmitter structure is shown in Figure

2.2. The antenna consists of two 5−10 µm wide conductive metal striplines (stan-

dard mixture is gold-germanium-nickel) lithographically deposited on a semi-

insulating GaAs substrate wafer, and separated by 10−100 µm [29]. The applied

field of typically 9−90 Volts across the striplines serves to accelerate the photo-

generated free carriers produced by an incoming laser pulse with a photon energy

larger than the bandgap. The transient current through the switch gives rise to

a time-varying macroscopic electric dipole moment, P(t). The resulting electric

field from the oscillating dipole in the far-field limit is given by

E(r, t) =
1

4πεoc2r
r̂×

(
r̂× d2P(t)

dt2

)
. (2.1)
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Figure 2.2: The Austin switch configured as a THz emitter. The laser is focused
near the positive electrode where the electric field is maximized. The THz emitter is
typically biased with 9−90 Volts.

The radiated electric field, E(r,t), i.e. the terahertz pulse, thus has the same

polarization as the applied electric field across the striplines.

The efficiency of the emitted terahertz radiation with a high bandwidth de-

pends on a number of parameters. In particular the dynamical properties of the

semiconductor substrate determines the time evolution of the electric dipole mo-

ment, P(t). A high carrier mobility ensures a sharp rising edge of the transient

photocurrent which dominates the radiation, E(t) ∝ ∂J(t)/∂t. The most effec-

tive semi-insulating substrate is chromium compensated gallium arsenide grown

by the Czochralski method [29] or low temperature gallium arsenide (LT-GaAs).

The applied electric field creates a strong field concentration near the anode which

is further enhanced by ionization of deep acceptor traps [30]. The femtosecond

laser pulses are then focused tightly to a spot diameter of ∼10 µm in the high

field region near the anode in order to create the strongest and fastest terahertz

pulses. It has been found that focusing the laser beam through a cylindrical lens

to an oblong shape along the anode further enhances the THz radiation [29].

In order to effectively couple the terahertz radiation into free space in a for-

ward direction a small hemispherical substrate lens is directly attached to the
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back of the emitter substrate [31]. It is important to place the lens in direct

contact with the substrate to avoid Fresnel losses and multiple reflections from

an air interface. An excellent lens material is high-resistivity crystalline silicon

which is highly transparent and dispersion free in the terahertz region with a

very low absorption. The refractive index (n = 3.4177) is practically constant in

the THz regime and matches the index of the most common antenna substrates

(sapphire, GaAs, Si).

(a) (b) (c)

Figure 2.3: Refraction of rays from three different substrate lens designs. (a) The
non-focusing hemispherical, (b) the aplanatic hyper-hemispherical, and (c) the focusing
hyper-hemispherical substrate lenses.

Figure 2.3 shows three possible substrate lens designs. These are the non-

focusing hemispherical, the aplanatic hyper-hemispherical, and the focusing hyper-

hemispherical lenses. Typical lens diameters are 2−10 mm. The design specifi-

cations are given by the lens diameter r, the refractive index n, and the distance

from the center of the lens to the focal point ρ. In the hemispherical design

(ρ = 0) all rays exit the lens at normal incidence. Like the hemispherical design,

the aplanatic hyper-hemispherical design (ρ = r/n) has no spherical aberration

or coma, as well as no chromatic abberations [32], when using a lens material
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such as silicon with a constant refractive index. The rays are slightly collimated,

which allows the remaining optical system to be designed with higher f-numbers.

The focusing hyper-hemispherical lens design (ρ = r/(n− 1)) collimates the rays

fully. However, diffraction effects become important in this design because of the

long wavelength of the terahertz radiation (1 THz ∼ 0.3 mm) compared to the

output beam.

5 µm

10-50 µm
A

Figure 2.4: The Austin switch configured as a THz detector. The laser is focused in
the photoconductive gap bridging the two striplines.

The detector consists of the same building blocks as the emitter with the re-

placement of the voltage bias with a current meter connected across the striplines

as shown in Figure 2.4. The detection of the terahertz radiation is based on the

same principles as for the generation described above. However, in this case the

driving field for the photocarriers is provided by the electric field of the incident

terahertz pulse. The femtosecond laser pulse opens the photoconductive switch,

but no current will flow through the switch until both the terahertz field and the

photocarriers are present. The current across the striplines will then be directly

proportional to the instantaneous THz field. With the photocarrier lifetime, τ

much shorter than the THz pulse, the photoconductive Austin switch will act as

a sampling gate which samples the terahertz field within the time τ . By varying

the time delay between the excitation and detection pulses, a sampled replica of

the THz waveform is then recorded as a function of time.
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The bandwidth of the detection process is determined by the frequency-

dependence of the antenna structure which governs the low-frequency cutoff,

and by the photocurrent response which governs the high-frequency cutoff. For

a Hertzian dipole antenna with dimensions much less than the wavelength of

the incident radiation, the collection efficiency becomes proportional to the ra-

diation frequency, ω. This corresponds to a differentiation of the signal in the

time-domain. The photocurrent response, J(t) is described by the convolution of

the transient photoconductivity, σ(t) and the electric field, E(t) of the terahertz

waveform

J(t) =

∫
σ(t − t′)E(t′)dt′. (2.2)

The current waveform reproduces E(t) accurately when the photocurrent tran-

sient is much shorter than the terahertz waveform, ideally a delta function. Thus,

to obtain a high detection bandwidth the antenna must first of all be small. The

striplines (standard mixture is titanium-aluminum) are typically 5 µm wide and

separated by 10−50 µm. Secondly, the substrate must have a very short carrier

lifetime. Suited materials are Ion implanted silicon on sapphire (RD-SOS) [33]

and LT-GaAs, both with carrier lifetimes less than 0.5 ps.

Terahertz spectrometers based on photoconductive dipole antennas driven by

sub-100 fs laser pulses can produce terahertz pulses with a bandwidth up to 5 THz

[34].

2.1.2 Collimating and Focusing Optics

In order to perform spectroscopic measurements, the THz transmitter and de-

tector are incorporated into a millimeter wave optical system such as shown in

Figure 2.5. In Figure 2.5(a) off-axis paraboloid mirrors are used to collimate

and focus the THz radiation to a diffraction-limited spot at the sample position.
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Figure 2.5: Typical designs for THz optical systems. The THz radiation is coupled
in and out of the photoconducting dipole antenna using substrate lenses (SL). In (a)
off-axis paraboloid mirrors are used to collimate and focus the THz radiation, and in
(b) off-axis paraboloid mirrors are used to collimate the THz beam and a set of lenses
to focus the THz beam.
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Alternatively, Figure 2.5(b) uses off-axis paraboloid mirrors to collimate the THz

beam and a set of lenses to focus the THz beam. Gold-coated paraboloids offer

high reflectivity and achromatic operation over the entire THz range, and can

easily be aligned with a laser beam. High-resistivity silicon (n ∼ 1.4) is an ex-

cellent lens material and may be used up to ∼10 THz, but does not allow for

optical alignment with a visible laser beam. The collimating and focusing optics

are typically 2−inch−diameter optics with focal lengths in the range from 60 mm

to 150 mm depending on the application. A focal spot less than 1 mm is readily

achieved.

The emitter and receiver antennas are positioned with the substrate lens at

the focal spot of the first and last paraboloid mirrors, respectively. The THz beam

is a near Gaussian beam [35], and in the design considerations it is important to

distance two adjacent THz guiding optics the added focal lengths apart (f1+f2).

This is well known to increase the performance of the system by ∼1.5 times or

more. It is furthermore of critical importance to position the substrate lenses

precisely centered at the emitter and detector within a tolerance of ±5 µm to

obtain the most intense and highest bandwidth THz pulses [29].

The absorption of ambient water vapor can lead to ringing of the THz pulses

and the THz beam should be enclosed in a nitrogen purged atmosphere to avoid

distortion of the THz pulses.

2.1.3 Electro-optic generation and detection of THz Pulses

In recent years, the prospect of a bandwidth extending beyond 5 THz has stim-

ulated an interest in developing electro-optic techniques for the generation and

detection of ultrafast broadband THz pulses. The THz pulses are generated

by optical rectification (or the inverse optical effect) in semiconductors [36] or
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nonlinear dielectric crystals [37] by use of femtosecond optical pulses. Difference-

frequency mixing produces a low frequency polarization that follows the envelope

of the incident laser pulse. The nonlinear polarization at the difference frequency

is given by

P
(2)
i (ω) = χ

(2)
ijk

∫
Ej(ωopt)Ek(ωopt − ω)dωopt. (2.3)

The second-order nonlinear susceptibility χijk is related to the electro-optic tensor

rijk by the expression

χijk = −1

4
n2
i n

2
jrijk. (2.4)

In the time-domain Equation (2.3) yields

P
(2)
i (t) = χ

(2)
ijkEj(t)Ek(t). (2.5)

This polarization is not stationary, however, but moves with the group velocity

of the optical pulse. The contribution from the infrared lattice vibrations to

the low-frequency dielectric response causes the velocity of the source to exceed

the radiation velocity. This restricts the bandwidth available for efficient phase

matching. The phase matching condition for the optical rectification process is

given by

∆k = k(ωopt + ωTHz)− k(ωopt)− k(ωTHz) = 0, (2.6)

where ωopt and ωTHz are the optical and THz frequencies, respectively [38, 39].

Developing this condition up to first order in the frequency, gives the following

expression for the inverse THz phase velocity

k(ωTHz)

ωTHz

≈ (ωopt + ωTHz)− ωopt

ωTHz

(
∂k

∂ω

)
opt

=

(
∂k

∂ω

)
opt

. (2.7)

This relation implies that phase matching is achieved when the phase of the THz

wave travels at the same speed as the optical pulse envelope, i.e., the optical group
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velocity, vg. After the optical laser pulse and the THz wave have copropagated

through a material of thickness d, the accumulated group velocity mismatch

(GVM) time is

δ(ωTHz) ≈ ng(λopt)− n(ωTHz)

c
d, (2.8)

assuming a monochromatic THz wave and a delta-function like optical pulse

centered at λopt. ng(λopt) is the optical group index, n(ωTHz) the THz phase

index, and d the crystal thickness. A trade-off clearly exists between a broadband

response and a long interaction length. The THz bandwidth is ultimately limited

only by the THz phase mismatch and phonon resonances of the nonlinear crystal.

Several considerations determine the selection of the electro-optic material.

The material should both have a large electro-optic coefficient, and be trans-

parent to the optical pulse having low absorption. It should also have good

transparency in the far-infrared with low attenuation. Furthermore, the static

birefringence in both the optical and the far infrared regions of the spectrum

should be small. The generation of terahertz radiation through optical rectifica-

tion has been demonstrated in a variety of materials, such as the ionic crystals,

LiNbO3 and LiTaO3 [40], covalent zincblende crystals such as ZnTe, GaAs, GaP

[41] and InP [42], and organic crystals [43].

Ionic crystals have large electro-optic coefficients, but their static dielectric

constants are too high for efficient phase matching [44]. Furthermore, their ionic

nature exhibit strong dispersion and absorption in the THz regime. Covalent

zincblende crystals have moderate electro-optic coefficients, relatively low dielec-

tric constants and zero intrinsic birefringence. Particularly ZnTe has shown excel-

lent optical-group-velocity THz-phase-velocity matching within the tuning range

of Ti:sapphire lasers with a maximum sensitivity at 2 THz [38]. However, in

ZnTe there is a broad TA-phonon absorption line centered at 1.6 THz and one
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Figure 2.6: Typical optical set-up of a THz-TDS spectrometer using electro-optic tech-
niques for the generation and detection of THz pulses without any focusing optics.

stronger at 3.7 THz in addition to a TO-phonon resonance at 5.3 THz limiting the

bandwidth to below 5 THz [45] with a typical crystal thickness of 1 mm. GaAs,

GaP, InP have higher lying TO-phonon lines at 8, 9 and 11 THz, respectively.

However, the electro-optic coefficients are somewhat smaller [42].

The detection of the THz pulses is based on the linear electro-optic effect

(Pockels effect). Since terahertz optical rectification originates from the second

order nonlinear susceptibility, which also determines the electro-optic effect, ter-

ahertz generation and detection in electro-optic crystals are merely two inverse

processes. Thus the same considerations concerning phase matching, etc. apply

to the detection side, where a laser probe pulse travels collinear with the incident

THz waveform.

Figure 2.6 shows a typical experimental set-up for the generation of THz

pulses via optical rectification and coherent detection via free-space electro-optic

sampling without any focusing optics. The terahertz radiation is generated in a
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〈110〉 oriented ZnTe crystal with the polarization of the laser pulses parallel to

the 〈100〉 axis for maximum coupling to the electro-optic coefficient r41. A high-

resistivity silicon or teflon filter is used to block the generating laser beam. It is

positioned at Brewster angle to allow maximum transmittance of the THz radia-

tion. The THz radiation is imaged into an identical ZnTe crystal using two off-axis

paraboloidal mirrors. A 2−µm−thick 50% pellicle beamsplitter is interposed in

the THz beam to allow an optical probe pulse with circular polarization to travel

collinear with the THz pulse through the ZnTe crystal. The pellicle beamsplitter

has a negligible effect on the THz beam and the laser pulse width. The electric

field of the linearly polarized THz pulse modulates the optical refractive index

of the probe pulse via the Pockels effect and thereby induces an ellipticity of the

probe polarization. To convert the field-induced ellipticity modulation into an

intensity modulation, the probe pulse is analyzed by a compensator (λ/4-plate)

and a polarizer (Wollaston prism), then detected by a pair of balanced identi-

cal photodiodes. This detection scheme effectively reduces common-mode laser

noise, so that the detection is primarily shot-noise limited. Peak-to-peak noise

is routinely reduced to as small as 1.0×10−8. It is fine adjusted by rotating the

λ/4-plate appropriately. The temporal waveforms are then sampled by varying

the time delay between the optical pump and probe pulses.

It has been demonstrated that, with this technique, frequencies as great as

37 THz can be measured [46]. In this experiment a Ti:sapphire laser delivered

12 fs pulses at 800 nm and an average power of 500 mW. A 0.45−mm−thick 〈110〉
oriented GaAs wafer was used as emitter and a 30−µm−thick 〈110〉 ZnTe crystal
as the electro-optic sensor. These thin crystals effectively minimize the optical

and terahertz dispersion, absorption, phonon-polariton coupling, and GVM, re-

sulting in high bandwidth. However, the trade-off is with the sensitivity and

with the reflection-free time window. The reflection-free time window can be in-
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creased by attaching a 〈100〉 plate of the same crystal, which has null transverse

electro-optic effect, to the back of each of the 〈110〉 crystals to delay the THz

reflection.

2.2 Time-Domain Analysis

To extract the complex material parameters of the sample under study THz-

TDS requires two measurements. In the first measurement, a set of averaged

scans of the temporal profiles Esig(t) of the THz pulses transmitted through the

sample are recorded. In the second measurement, a set of averaged scans of

the temporal profiles Eref(t) of the THz pulses transmitted through a reference

with known parameters are recorded. After appropriate time-windowing and

zero padding, the Fourier transform of the sample measurement is divided by the

Fourier transform of the reference measurement. This ratio gives the complex

transmission coefficient of the sample as a function of frequency. The final step

involves performing a complex fit of the measured transmission coefficient to the

theoretical transmission coefficient. This yields the complex refractive index,

dielectric function or conductivity.

2.2.1 Time-Windowing of Data

An optically thick sample is defined as a sample for which the echoes of the

THz pulse, caused by multiple reflections in the sample, are temporally well

separated. In other words, when the transit time of the THz pulse is much larger

than its duration, the THz signal drops to zero between two echoes. In this case

it is possible to keep only the first directly transmitted THz pulse by temporally

windowing out the echoes. In THz-TDS, the spectral resolution is the inverse of
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the total scan time. However, since the measurement is performed in the time-

domain, it is much more convenient to window out reflections in the raw data

than to remove the reflections in the frequency-domain.

Even when there are no reflections the THz pulse is often windowed to smooth

the data to prevent spectral leakage. The finite-length data is multiplied by a

window whose amplitude varies smoothly and gradually goes to zero at the edges.

This reduces the discontinuity at each period of the sampled data. In the case of

THz pulses with a sampling period of ts = 40 fs, the sampling rate is fs = 25 THz,

and the Nyquist frequency is fs/2 = 12.5 THz. The duration of a THz pulse is

typically only a few ps, and a scan is typically 10 ps or longer, giving plenty of

room to bring the edges to zero. In most cases it is sufficient to gently window

the data with a weakened Hanning window, or to exponentially bring the edges

to zero on the first and last 20−30 data points.
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Figure 2.7: Measured THz waveforms of a 0.5 mm LaAlO3 substrate as the sample
scan and air as reference displaying the time delay between the two scans. The sample
scan is displaced vertically with respect to the reference scan for clarity.
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The sample signal and reference signal are typically shifted in time (see Figure

2.7), where the reference arrives before the signal. Intuitively, the time shift

roughly determines the real index (c/n = L/t), and the decrease in amplitude

determines the imaginary index of the sample. Here, t is the time shift, c the

speed of light, L the distance the light travels, and n the real index of the sample.

It is important that the window is centered at the center of the THz pulse for each

of the sample and reference signal to avoid introducing artifacts. Furthermore,

data points at the beginning of the sample signal should be zeroed corresponding

to the time shift between the sample and reference signal, and data points at the

end of the reference signal should be zeroed equivalently. This ensures that the

same bumps and other characteristics of the scan are present in both sample and

reference. In the case of a noticeable phase change in the THz pulse (i.e. high-

Tc superconductors below Tc) the time shift is not as well defined and requires

special considerations.

Zero padding is used to increase the frequency resolution of the Fourier trans-

formed input signal (∆f = fs/N) by artificially increasing the number of samples

or data points, N . The input sequence size is made equal to a power of two by

adding zeros to the end of the sequence. This simplifies the fast Fourier transform

(FFT) algorithm as well.

In summarizing, the window process involves the following steps. Firstly, any

offset is subtracted from the THz pulse in each of the sample and reference which

brings the beginning and the end of each scan close to zero. Data points at the

beginning of the sample and at the end of the reference scans are then zeroed

according to the time shift. Finally, the sample and reference scans are windowed,

and zero padded before performing an FFT.
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2.2.2 Complex Transmission Coefficients

The theoretical complex transmission coefficient of the sample as a function of fre-

quency is obtained by dividing the complex transmission coefficient of the sample

by the complex transmission coefficient of the reference, T (ω) = Esig(ω)/Eref(ω),

where Esig(ω) and Eref(ω) are the FFT of the time-domain pulses.
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Figure 2.8: Propagation of a plane wave in a slab of material of thickness d illustrating
the incident, reflected, and transmitted waves at the interfaces.

Figure 2.8 illustrates the incident, reflected, and transmitted fields of the THz

radiation at the interfaces of a medium of thickness d. The Fresnel equations for

the transmission coefficients in s-, and p-polarizations are

T s
12 =

2ñ1 cos θ1

ñ1 cos θ1 + ñ2 cos θ2

, (2.9)

T p
12 =

2ñ1 cos θ1

ñ2 cos θ1 + ñ1 cos θ2

, (2.10)

and the Fresnel equations for the reflection coefficients in s-, and p-polarizations

are

Rs
12 =

ñ1 cos θ1 − ñ2 cos θ2

ñ1 cos θ1 + ñ2 cos θ2

, (2.11)
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Rp
12 =

ñ2 cos θ1 − ñ1 cos θ2

ñ2 cos θ1 + ñ1 cos θ2

. (2.12)

Here, θ1 and θ2 are the angles of incidence in medium 1 and 2, respectively. ñ1

and ñ2 are the frequency-dependent complex refractive index, ñ = n + iκ =
√

ε in medium 1 and 2, respectively. n is the refractive index and κ is the

extinction coefficient. The propagation coefficient (or phase shift) in medium 2

over a distance d is given by

P2 = exp

[
i
ωd

c
ñ2 cos θ2

]
, (2.13)

where ω is the angular frequency and c is the speed of light. In the case of an

optically thin medium with multiple reflections of the THz pulses superimposed

the propagation coefficient P2 is multiplied by a Fabry-Perot term [32] F ,

F P2 =
exp

[
iωd

c
ñ2 cos θ2

]
1 + R12R21 · exp

[
2iωd

c
ñ2 cos θ2

] . (2.14)

This expression is good for both s-, and p-polarizations.

2.2.2.1 Thin Crystal

For a thin crystal (see Figure 2.8) Esig(ω) is given by

Esig(ω) = T12F P2T21 =
T12T21 · exp

[
iωd

c
ñ2 cos θ2

]
1 + R12R21 · exp

[
2iωd

c
ñ2 cos θ2

] . (2.15)

For air as reference (n1 = 1) Eref(ω) is given by

Eref(ω) = P1 = exp

[
i
ωd

c
n1 cos θ1

]
. (2.16)
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Isotropic Thin Crystal

The complex transmission coefficient of a thin isotropic crystal as a function of

frequency is given by

T (ω) =
Esig(ω)

Eref(ω)
=

T12T21 · exp
[
iωd

c

[
ñ2

√
1− n2

1

ñ2
2
sin2 θ1 − n1 cos θ1

]]
1 + R12R21 · exp

[
2iωd

c
ñ2

√
1− n2

1

ñ2
2
sin2 θ1

] , (2.17)

where for p-polarization

T p
12 = T p

21 =
2n1 cos θ1

ñ2 cos θ1 +
√

1− n2
1

ñ2
2
sin2 θ1

, (2.18)

and

Rp
12 = −Rp

21 =
ñ2 cos θ1 −

√
1− n2

1

ñ2
2
sin2 θ1

ñ2 cos θ1 +
√

1− n2
1

ñ2
2
sin2 θ1

. (2.19)

At normal incidence T (ω) simplifies to

T (ω) =

4
(ñ2+n1)2

· exp
[
iωd

c
(ñ2 − n1)

]
1−

(
ñ2−n1

ñ2+n1

)2

· exp
[
2iωd

c
ñ2

] . (2.20)

Anisotropic Thin Crystal

The complex transmission coefficient of a thin anisotropic crystal (see Appendix

(A.2.1)) for p-polarization as a function of frequency is given by

T (ω) =
Esig(ω)

Eref(ω)
=

T12T21 · exp

[
iωd

c
ñab

[√
1− n2

1

ñ2
c
sin2 θ1 − n1 cos θ1

]]
1 + R12R21 · exp

[
2iωd

c
ñab

√
1− n2

1

ñ2
c
sin2 θ1

] , (2.21)

where T12, T21, R12, and R21 are given in Appendix (A.2.1). For s-polarization

T (ω) is given by Equation (2.18) with ñ2 = ñab, where ñab is the complex in-plane

index. ñc is the complex out-of-plane index. T s
12, and T s

21 are given by Equation
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(2.9), and Rs
12, and Rs

21 are given by Equation (2.11). At normal incidence T (ω)

simplifies to

T (ω) =

4
(ñab+n1)2

· exp
[
iωd

c
(ñab − n1)

]
1−

(
ñab−n1

ñab+n1

)2

· exp
[
2iωd

c
ñab

] . (2.22)

2.2.2.2 Thick Crystal

For a thick crystal (see Figure 2.8) Esig(ω) is given by

Esig(ω) = T12P2T21 = T12T21 · exp

[
i
ωd

c
ñ2 cos θ2

]
. (2.23)

For air as reference (n1 = 1) Eref(ω) is given by

Eref(ω) = P1 = exp

[
i
ωd

c
n1 cos θ1

]
. (2.24)

Isotropic Thick Crystal

The complex transmission coefficient of a thick isotropic crystal as a function of

frequency is given by

T (ω) =
Esig(ω)

Eref(ω)
= T12T21 · exp

[
i
ωd

c

[
ñ2

√
1− n2

1

ñ2
2

sin2 θ1 − n1 cos θ1

]]
. (2.25)

At normal incidence T (ω) simplifies to

T (ω) =
4

(ñ2 + 1)2
· exp

[
i
ωd

c
(ñ2 − 1)

]
. (2.26)

Anisotropic Thick Crystal

The complex transmission coefficient of a thick anisotropic crystal (see Appendix

(A.2.1)) for p-polarization as a function of frequency is given by

T (ω) =
Esig(ω)

Eref(ω)
= T12T21 · exp

[
i
ωd

c

[
ñab

√
1− n2

1

ñ2
c

sin2 θ1 − n1 cos θ1

]]
, (2.27)
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where T12, and T21 are given in Appendix (A.2.1). For s-polarization T (ω) is

given by Equation (2.25) with ñ2 = ñab. T s
12, and T s

21 are given by Equation

(2.9). At normal incidence T (ω) simplifies to

T (ω) =
4

(ñab + 1)2
· exp

[
i
ωd

c
(ñab − 1)

]
. (2.28)

2.2.2.3 Thin Film on Thick Substrate
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Figure 2.9: Propagation of a plane wave in a thin film on a thick substrate illustrating
the incident, reflected, and transmitted waves at the interfaces.

For a thin film on a thick substrate (see Figure 2.9) Esig(ω) is given by

Esig(ω) = T12F P2T23P3T31

=
T12T23 · exp

[
iωd

c
ñ2 cos θ2

]
1 + R12R23 · exp

[
2iωd

c
ñ2 cos θ2

] · exp

[
i
ωL

c
ñ3 cos θ3

]
T31.(2.29)

For a thick substrate as reference Eref(ω) is given by

Eref(ω) = P1T13P
′
3T31P∆L

= exp

[
i
ωd

c
n1 cos θ1

]
T13 · exp

[
i
ωL′

c
ñ3 cos θ1

]
T13

exp

[
i
ω∆L

c
n1 cos θ1

]
. (2.30)
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∆L accounts for the difference in the thickness of the sample substrate and the

reference substrate (∆L = L − L′).

Isotropic Thin Film on Thick Substrate

The complex transmission coefficient of an isotropic thin film on a thick substrate

as a function of frequency is given by

T (ω) =
Esig(ω)

Eref(ω)
=

T12T23

T13
· exp

[
iωd

c

[
ñ2

√
1− n2

1

ñ2
2
sin2 θ1 − n1 cos θ1

]]
1 + R12R23 · exp

[
2iωd

c
ñ2

√
1− n2

1

ñ2
2
sin2 θ1

]
exp

[
i
ω∆L

c

[
ñ3

√
1− n2

1

ñ2
3

sin2 θ1 − n1 cos θ1

]]
. (2.31)

At normal incidence T (ω) simplifies to

T (ω) =

2(ñ3+1)
(ñ2+1)(ñ3+ñ2)

· exp
[
iωd

c
(ñ2 − 1)

]
1 + (ñ2−1)(ñ3−ñ2)

(ñ2+1)(ñ3+ñ2)
· exp

[
2iωd

c
ñ2

] · exp

[
i
ω∆L

c
(ñ3 − 1)

]
. (2.32)

Assuming ω
c
dñ2 � 1 and ñ2 � ñ3 > 1 Equation (2.31) reduces to the simple

form (see Appendix (A.1))

T (ω) =
1 + ñ3

1 + ñ3 + Zoσ̃(ω)d
· exp

[
i
ω∆L

c
(ñ3 − 1)

]
, (2.33)

where Zo represents the impedance of free space. Equation (2.33) can be solved

analytically for the complex conductivity σ̃(ω) given the measured complex trans-

mission coefficient T (ω).

Anisotropic Thin Film on Thick Substrate

The complex transmission coefficient of an anisotropic thin film on a thick sub-

strate (see Appendix (A.2.1)) for p-polarization as a function of frequency is given
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by

T (ω) =
Esig(ω)

Eref(ω)
=

T12T23

T13
· exp

[
iωd

c

[
ñab

√
1− n2

1

ñ2
c
sin2 θ1 − n1 cos θ1

]]
1 + R12R23 · exp

[
2iωd

c
ñab

√
1− n2

1

ñ2
c
sin2 θ1

]

exp

[
i
ω∆L

c

[
ñ3

√
1− n2

1

ñ2
3

sin2 θ1 − n1 cos θ1

]]
. (2.34)

Here T13 is given by Equation (2.10). T12, T23, R12, and R23 are given in Appendix

(A.2.1). For s-polarization T (ω) is given by Equation (2.31) with ñ2 = ñab = ñc.

T s
12, T s

23 and T s
13 are given by Equation (2.9), and Rs

12, and Rs
23 are given by

Equation (2.11). At normal incidence T (ω) simplifies to Equation (2.32) with

ñ2 = ñab. Assuming ω
c
dñ2 � 1 and ñ2 � ñ3 > 1 Equation (2.32) reduces to the

simple form given in Equation (2.33) with ñ2 = ñab.

2.2.3 Extraction of Material Parameters

The measured transmission coefficient of the sample as a function of frequency

contains information of both the amplitude and phase of the THz field. Thus,

this allows the extraction of both the real and imaginary part of the dielectric

function by performing a complex fit to the theoretical transmission coefficient,

without having to resort to the Kramers-Kronig relations. Given the complex

dielectric function ε̃ = ε1 + iε2, the complex refractive index ñ = n + iκ, or

the complex conductivity σ̃ = σ1 + iσ2, or the absorption coefficient α are eas-

ily calculated. For a plane monochromatic wave E=E0ei(k·r−ωt) traveling in an

anisotropic medium Maxwell’s equations [47] yield the following relation between

the dielectric function and the conductivity tensor

(CGS) ε̃ij(k, ω) = δij +
4πi

ω
σ̃ij(k, ω)

(SI) ε̃ij(k, ω) = δij +
i

εoω
σ̃ij(k, ω), (2.35)
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where

ε̂ =




ε⊥ 0 0

0 ε⊥ 0

0 0 ε‖




for a uniaxial anisotropic crystal (see Appendix (A.2)). In the case of a transverse

wave traveling in a homogeneous isotropic medium E is perpendicular to k and

ε is a scalar. Thus,

k =
ω

c
ñ; ñ(k, ω) =

√
ε(k, ω). (2.36)

The real part and the imaginary part of ε are related to the refractive index n,

and the extinction coefficient κ by

ε1 = n2 − κ2, (2.37)

ε2 = 2nκ. (2.38)

The absorption coefficient α is defined by

α =
2ωκ

c
=

ωε2

nc
, (2.39)

and the real part and the imaginary part of the conductivity σ are given by

(CGS) σ1 =
nκω

2π
=

ε2ω

4π

(SI) σ1 = 2nκεoω = εoε2ω, (2.40)

(CGS) σ2 =
ω(1− n2 + k2)

4π
=

(1− ε1)ω

4π

(SI) σ2 = εoω(1− n2 + k2) = εo(1− ε1)ω. (2.41)

Figure 2.10 shows the measured THz waveforms in the time-domain of an

optimally doped 50 nm YBCO thin film on a 0.5 mm MgO substrate and a 0.5

mm MgO substrate reference at normal incidence, and at T = 50 K. The corre-

sponding Fourier transforms are shown in Figure 2.11. The measured complex
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Figure 2.10: Measured THz waveforms of an optimally doped 50 nm YBCO thin film on
a 0.5 mm MgO substrate and a 0.5 mm MgO substrate reference at normal incidence.
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Figure 2.11: FFT amplitude of the measured THz waveforms shown in Figure 2.10.
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Figure 2.13: Complex conductivity of the YBCO film obtained from the measured THz
waveforms shown in Figure 2.10 by a complex fit to Equation (2.32) (solid lines), and
to the simplified Equation (2.33) (triangles) for comparison.

transmission coefficient of the sample as a function of frequency is shown in Fig-

ure 2.12. Finally, Figure 2.13 shows the real part and the imaginary part of the

conductivity, obtained from a complex fit of the measured transmission coeffi-

cient to the theoretical transmission coefficient T (ω) given by Equation (2.32).

For comparison, a fit to the simplified Equation (2.33) also shown in Figure 2.13

produces the same real and imaginary conductivities.

2.3 Time-Resolved Optical-Pump Terahertz-Probe Spec-

troscopy

Time-resolved optical measurements are of extreme importance in condensed

matter systems because they can resolve dynamical processes at the fundamental

timescales at the electronic and nuclear motion. In typical time-resolved pump-

probe measurements, a short laser pulse is split into an intense pump pulse and
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a much weaker probe pulse. The pump pulse induces a change in the sample

and the probe pulse measures the induced change in the sample. By varying the

delay between the pump pulse and the probe pulse one can follow the temporal

development of the induced change in the sample. This development, which is

typically measured in either transmission, ∆T/T , or reflection, ∆R/R, contains

information of the relaxation dynamics in the sample. These measurements have

found applications in various disciplines, such as chemistry where chemical reac-

tion dynamics are studied by pump induced changes in absorbance. In semicon-

ductors, measurements of the dynamics of hot-electron relaxation give important

information of the physics of nonequilibrium phenomena in these materials, and

information about the carrier-phonon and carrier-carrier interactions, which are

of fundamental interest in semiconductor physics [48]. In the study of thin metal

films, and more recently in metallic nanoparticles [49], time-resolved techniques

are a powerful tool to monitor the electron-thermalization dynamics [50, 51]. As

a final example, all optical pump-probe experiments have provided some insight

into the ground state and nonequilibrium properties of high-Tc superconductors

[52−56]. These time-domain experiments have the ability to temporally distin-

guish dynamics related to superconductivity, which can be difficult to resolve in

the frequency-domain, given the multiplicity of similar energy scales in high-Tc

superconductors.

The transiently induced change in transmission ∆T/T (or in reflection ∆R/R)

for small perturbations is related to the induced changes in the dielectric function

ε̃ = ε1 + iε2 of the sample by

∆T/T =
∂lnT

∂ε1

∆ε1 +
∂lnT

∂ε2

∆ε2 (2.42)

which embodies the electronic properties of the material. Here ∆ε1 (∆ε2) is the

induced change in the real (imaginary) part of ε̃.
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The physics of ultrafast electron dynamics in metallic systems is most eas-

ily captured by considering a simple picture of the excitation and equilibration

processes involved as depicted in Figure 2.14. The large difference between the

electronic and lattice specific heat (Ce � Cl) allows for the preferential excita-

tion of the electron gas by absorption of a femtosecond laser pulse, resulting in

a nonequilibrium condition, Te > Tl, where Te is the temperature of the electron

distribution and Tl is the lattice temperature. The initial rise in ∆T/T (see Figure

2.15) is associated with the equilibration of nonequilibrium electrons relaxing to a

hot Fermi distribution through electron-electron interactions following optical ex-

citation. In the second time regime, after electron thermalization, ∆T/T decays

due to electron-phonon processes as the electron gas loses its energy and thermal-

izes with the lattice. After a few picoseconds, a local equilibrium will be reached

at a slightly higher temperature than the initial temperature, Te = Tl > To. The

final step in the relaxation process involves thermal diffusion of phonons into the

substrate and in the transverse direction on a 100 ps time scale as the electrons

and phonons return to the original temperature To.

The temporal evolution of the electron and lattice temperatures can be de-

scribed by a set of coupled differential equations. This two-temperature model

treats the electrons and phonons as coupled subsystems with well defined tem-

peratures at all times, where the electrons are described by a Fermi-Dirac distri-

bution, and the phonons by a Bose-Einstein distribution. The model describes

the energy flow between the coupled subsystems, but neglects the changes in oc-

cupation numbers. However, since this model assumes that all the optical energy

is absorbed by the electrons which thermalize instantaneously to a hot Fermi dis-

tribution, but actually occurs over some few 100 fs, the two-temperature model

must be modified to include the nonthermal electrons as a separate subsystem.

Thus, the evolution of the electron-phonon coupled system is described by an
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Figure 2.14: Ultrafast electron dynamics in metals. (a) A femtosecond pulse creates a
nonthermal electron distribution. (b) The nonthermal electron distribution thermalizes
to a hot Fermi distribution. (c) Electron-phonon coupling and heat diffusion cools the
electrons and the lattice back to equilibrium.
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Figure 2.15: Illustration of the behavior of ∆T/T as a function of time in a metallic
system.

effective two-temperature model given by

∂N

∂t
= −αN − βN, (2.43)

Ce(Te)
∂Te

∂t
= −G(Te − Tl) + αN, (2.44)

Cl(Tl)
∂Tl

∂t
= G(Te − Tl) + βN, (2.45)

where N is the energy density initially stored in the nonthermal electron distribu-

tion, α is the rate of energy transfer from the nonthermal population to the hot

Fermi distribution, β = G/Ce is the electron-phonon coupling rate, Ce(Te) and

Cl are the electron and lattice specific heat, respectively, and G is the electron-

phonon coupling constant. Te and Tl are the electron and lattice temperatures,

respectively. For small pertubative temperature changes (∆Te � To) Ce and G

can be considered as constants, and the temperature change in the Fermi part of

the electron distribution as a function of time is found to be

∆Te ∝
[
1− exp

(
− t

τr

)]
exp

(
− t

τd

)
, (2.46)

where τr = 1/α and τd = 1/β = Ce/G. The induced change in transmission

∆T/T corresponds quantitatively to this functional form, where the temperature
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of the electron distribution is described by an exponential rise time τr which

is related to the relaxation of the nonthermalized distribution, followed by an

exponential decay τd due to electron-phonon coupling.

Ultrafast optical pump-probe spectroscopy is an invaluable tool to investigate

time-dependent or nonequilibrium phenomena in solid state materials that can-

not be accessed by conventional techniques such as dc transport measurements.

However, a potential drawback of all optical pump-probe experiments is that the

probe energy, typically 1.5 eV or greater, is much larger than the relevant energy

scales in many systems, such as the d-wave superconducting gap or pseudogap

in high-Tc superconductors. Alternatively, combining THz-TDS with optical ex-

citation one can measure the evolution of optically induced changes in the real

and imaginary induced conductivity with a probe energy much closer to the rel-

evant energy scales in the material. This technique also allows one to temporally

discriminate processes such as electron-electron, electron-phonon and spin-lattice

interactions by their different relaxation time scales. This can provide new in-

sight into the low-lying excitations of complex systems such as the hole doped

transition metal oxides, examples being high-Tc superconductors [57] or mixed

valence manganites [58].

A time-resolved optical-pump THz-probe experiment is shown in Figure 2.16.

An intense optical pump pulse, derived from the same laser beam that triggers

the THz transmitter and detector, photoexcites the sample. Using a mechanical

delay line, the optically induced changes in the transmitted electric field can be

measured with subpicosecond resolution.

The complex transmission coefficient of the sample as a function of frequency

and pump-probe delay time τ is given by

T (ω, τ) =
F F T (Eeq(t) + ∆E(t, τ))

F F T (Eref (t))
=

Esig(ω, τ)

Eref (ω)
. (2.47)
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Figure 2.16: Typical optical set-up of an optical-pump THz-probe experiment. An
optical pump pulse directly excites the sample, and the focused THz beam probes the
far-infrared properties of the sample as a function of time after optical excitation.

42



Here Eeq(t) is the equilibrium scan of the sample in the time-domain without

optical excitation. ∆E(t, τ) is the induced changes in the electric field, ∆E(t, τ) =

Eex(t, τ)−Eeq(t), where Eex(t, τ) is the scan of the sample with optical excitation.

The induced change in the electric field is related to the induced changes in the

conductivity of the sample by

∆σ(ω, τ) = −∆T (ω, τ)

T (ω, τ)

1

T (ω, τ)

(1 + n3)e
iω

c
∆L(n3−1)

Zod
(2.48)

= −∆E(ω, τ)

Esig(ω, τ)

Eref (ω)

Esig(ω, τ)

(1 + n3)e
iω

c
∆L(n3−1)

Zod
(2.49)

for a thin film on a thick substrate using Equation (2.33) (see Appendix A.1.1).

Experimentally, ∆E(t, τ = τi) is obtained by scanning the THz probe delay

line and mechanically chopping the optical pump delay line which is positioned

at a specific pump-probe delay time τ = τi. This procedure measures the dif-

ference between Eex(t, τ = τi) and Eeq(t) at the rate of the chopper frequency

immediately yielding ∆E(tr, τ = τi) at each THz probe delay time tr. Alter-

natively, by chopping and scanning the THz probe delay line one would collect

the data for first Eex(t, τ = τi) (i.e. pump on) and then Eeq(t) (i.e. pump off)

in separate scans. The former procedure allows for increased signal sensitivity

as it is more robust to system drift, particularly when the difference between

Eex(t, τ = τi) and Eeq(t) is small. After obtaining ∆E(t, τ = τi), Eeq(t) and

Eref (t) are measured by chopping and scanning the THz probe delay line. The

real and imaginary conductivity are then obtained from Equation (2.47), and the

induced conductivity from Equation (2.49). ∆E(t, τ = τi) must be measured at

each pump-probe delay time as the optical excitation can induce changes in both

the phase and amplitude of the THz electric field. This is particularly true for

high-Tc superconductors where the imaginary conductivity changes dramatically

(see Chapter 5.1). However, for samples in which the optical excitation causes

changes primarily in the THz electric field amplitude (i.e. ∆σimag � 1) an alter-
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Figure 2.17: Illustration of the conductivity dynamics in a metallic system where
σimag � 1. σreal is obtained by scaling 1 − ∆E(t = tpeak, τ) to σreal(τ < 0) and
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native method can be employed. ∆E(t = tpeak, τ) as a function of τ is obtained in

a single scan by chopping and scanning the optical pump delay line while the THz

probe delay line is positioned at the peak THz electric field. 1−∆E(t = tpeak, τ)

can then be scaled to the absolute conductivity by measuring σ before the arrival

of the excitation pulse (τ < 0), and at a later pump-probe delay time in a stable

regime but before complete recovery has occured (see Figure 2.17). This method,

if applicable, provides considerable time savings in measuring the conductivity

dynamics. One example where this method is justifiable is in the studies of colos-

sal magneto resistance thin films (see Chapter 5.2.2). It must be kept in mind

that this method is an approximation that can be employed only when the in-

duced change in σimag is small or the phase of the THz pulse does not change

with optical excitation (i.e. σimag � 1). In other words, it is useful for measuring

σreal under special circumstances.
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CHAPTER 3

Introduction to Vortex Physics in High-Tc

Superconductors

An applied magnetic field induces a vortex lattice in a high-Tc superconductor in

the mixed-state which responds to changes in temperature and magnetic fields,

and to applied currents. A sufficiently strong magnetic field or will cause the

superconductor to return to the normal state. Vortex dynamics are of great

importance because it determines both the transport and magnetic properties of

high-Tc superconductors.

3.1 Properties of the Superconducting State

The phenomenon of superconductivity occurs below a critical temperature Tc

exhibiting zero dc electrical resistivity, and diamagnetic response to an applied

magnetic field. The microscopic mechanism responsible for superconductivity

is qualitatively explained by the Bardeen, Cooper, and Schrieffer (BCS) theory

[59]. Electrons near the Fermi surface condense into a superconducting ground

state formed of Cooper pairs. A Cooper pair consists of two electrons with equal

and opposite momentum and opposite spin. The two electrons are coupled via

a phonon mediated attraction. An energy gap in the electronic spectrum opens

up at the Fermi energy with a width 2∆(T ), which is the energy required to
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break a Cooper pair and create a pair of quasiparticle excitation above the gap.

The energy gap is closed above Tc. Below Tc it opens up increasing in size with

decreasing temperature leveling off at its maximum value 2∆(0). In the weak

coupling limit of the BCS theory the transition temperature can be estimated

from 2∆(0) ≈ 3.5KBTc [60].

The phenomenology of superconductivity is based on the Ginzburg-Landau

theory [61] which provides a variational functional of the free energy describing

the superconducting state. The two fields determining the physics of the system

are the complex superconducting order parameter Ψ and the vector potential A.

The order parameter vanishes above Tc and its magnitude describes the degree

of superconducting order at position r below Tc. The order parameter Ψ(r) has

the property that Ψ∗(r)Ψ(r) = ns(r), the local concentration of superconducting

electrons. The Ginzburg-Landau equations define two length scales. The first is a

coherence length ξ that sets the scale for spatial variations of the order parameter

Ψ. The second length is the London penetration depth λL that sets the length

scale for variations in the magnetic induction inside the superconductor.

Low-Tc superconductors are well described by the BCS theory with a simple

complex order parameter Ψ(k) = φL(k)χspin describing the quantum mechanical

collective wave function of the Cooper pairs. The phonon-mediated short range

interaction leads to a spherically symmetric pairing (Angular momentum L = 0)

and the spin state must then be a singlet. Such a superconductor where the

density of Cooper pairs is uniform in momentum space has s-wave symmetry

(see Figure 3.1(a)), i.e. Ψ is direction independent and the superconducting gap

∆(k) is independent of k.

Although the symmetry of the order parameter in high-Tc superconductors

is still controversial, the majority of experimental evidence support d-wave sym-
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Figure 3.1: Schematic representation of the symmetry of the superconducting order
parameter in k-space. In (a) is shown the situation for an isotropic s-wave order
parameter which is direction independent. In (b) is depicted the situation for a d-wave
order parameter which changes sign upon going through a node.

metry (see Figure 3.1(b)) [62, 63]. For a d-wave superconductor Ψ is direction

dependent (∆(k) ∝ (k2
x − k2

y)) ∝ cos(2θ)) and the superconducting gap has four

nodes in its spectrum. Monthoux et al. [64] proposed a strong-coupling the-

ory using a phenomenological spin-fluctuation spectrum. This theory produces

d-wave pairing, a relatively high transition temperature, and an anisotropic gap

with nodes.

3.1.1 Magnetic Properties

The earliest studies of the magnetic properties of superconductors were performed

on elemental metals (e.g. Hg, Pb, Al, Sn). These metals, now referred to as type

I superconductors exhibit perfect diamagnetism regardless of whether they are

cooled in a magnetic field or weather the field is applied after the sample is

in the superconducting state. A type I superconducting material cooled below

its transition temperature in an applied magnetic field below Hc will expel all
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magnetic flux from its interior due to surface Meissner currents that set up a

counter magnetic field exactly canceling the magnetic field in the interior. The

applied magnetic field decreases exponentially within a surface layer λL (the

London penetration depth). For the Meissner effect to occur B = 0. Thus the

superconductor displays perfect diamagnetism χ = M/H = −1/4π.

Now, as the applied magnetic field is increased beyond Hc magnetic flux will

completely penetrate a type I superconductor, and it enters the normal state. By

contrast, quantized flux lines will partially penetrate a type II superconductor at

the lower critical field Hc1, and it enters a mixed superconducting state or vortex

state. The surface energy between normal and superconducting metals is given

by the ratio of the penetration depth and the coherence length κ = λL/ξ. For

κ < 1/
√
2 the surface energy is positive corresponding to a type I superconductor.

However, for κ > 1/
√
2 the surface energy is negative and it becomes favorable for

magnetic flux to penetrate the superconductor in the form of quantized vortices.

The magnetization of a type I and a type II superconductor versus applied

field is shown in Figure 3.2. The density of flux lines increases with increased

applied field between Hc1 and the upper critical field Hc2 for a type II super-

conductor. Above Hc2 the superconductivity is quenched. In the vortex state

the flux arranges itself in a triangular array of flux tubes or vortex lines, each

carrying a quantum of flux

Φo =
hc

2e
. (3.1)

To see that the magnetic flux in the superconductor is quantized integrate the

superconducting current along a closed path within the superconductor. Using

the superconducting current density from the Ginzburg-Landau theory

j =
e

m

[
�∇φ − 2e

c
A

]
|Ψ|2, (3.2)
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Figure 3.2: (a) Magnetization versus applied magnetic field for a type I superconduc-
tor exhibiting perfect diamagnetism in the Meissner phase where no field penetrates.
Above the single critical field Hc a type I superconductor enters the normal state. (b)
Magnetization versus applied magnetic field for a type II superconductor. A type II
superconductor has a lower critical field Hc1 and a higher critical field Hc2 boundaring
a vortex phase where flux penetrates the superconductor.

where Ψ(r) is the complex order parameter, Ψ = |Ψ|eiφ, and A is the vector

potential, yields

0 =

∮
j · dl =

∮ (
�∇φ − 2e

c
A

)
· dl. (3.3)

If we take the line integral around a circuit in the superconductor where the

current density is zero this integral vanishes. Evaluating the first integral in

Equation (3.3) yields the flux enclosed∫
A · dl =

∫
∇×A · dS =

∫
B · dS = Φ. (3.4)

In the second integral of Equation (3.3) the order parameter is single valued and

the phase changes by 2π when going around the path∮
∇ · dl = �φ = 2πn. (3.5)

Thus, the flux enclosed by the path must be quantized

Φ =
hc

2e
n = Φon. (3.6)
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Figure 3.3: Schematic representation of the structure of an isolated Abrikosov vortex
in a high-Tc superconductor. The magnetic field is concentrated in the center of the
vortex. The order parameter goes to zero in the core region.

The structure of a vortex in the mixed-state is shown in Figure 3.3. Each

vortex consists of a superconducting current, and it creates a magnetic field

which is concentrated towards the center. The superconducting order parameter

Ψ(r), which describes the strength of superconductivity or the density of Cooper

pairs, goes to zero at the center of the core of the vortex and then recovers

with increasing radius over the length scale ξ (the coherence length). As an

approximation, the core region of radius ξ is often taken to be in the normal

state. The supercurrent circulates around the core and extends from ξ to λ. The

free energy per unit length is found from the field energy and kinetic energy of

the currents (neglecting the core) [60]

ε =
1

8π

∫
(h2 + λ2|∇ × h|2)dS =

Φo

8π
h(ξ) ≈

(
Φo

4πλ

)2

lnκ =
H2

c

8π
4πξ2lnκ. (3.7)

The condensation energy lost in the core is only a factor 4lnκ smaller. When

H = Hc1 one can calculate the lower critical field by considering the free energy

per unit length of the first vortex line. The Gibbs free energy has the same

value whether the first vortex is in or out of the sample (G = F − H
4π

∫
hdr)
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Gs|no flux = Gs|first vortex

G = F = F + εL − Hc1

∫
hdr

4π
= F + εL − Hc1ΦoL

4π
. (3.8)

The lower critical field is then given by

Hc1 =
4πε

Φo

≈ Φo

4πλ2
lnκ. (3.9)

The lower critical field Hc1 is mainly determined by the London penetration

depth. The upper critical field Hc2 is determined by the coherence length of the

superconductor

Hc2 =
Φo

2πξ2
. (3.10)

At Hc2 the vortices are spaced roughly ξ apart. Hc1(T ) and Hc2(T ) are shown in

the simple magnetic phase diagram in Figure 3.4.

Tc

Hc1

Hc2

H

Mixed Phase

Meissner Phase

Normal Phase

T

Figure 3.4: Schematic magnetic phase diagram of a high-Tc superconductor showing
the temperature dependence of the lower and higher critical fields.

In the mixed-state the flux arranges itself into a hexagonal closed packed array

or Abrikosov vortex lattice because of the repulsive forces between the vortices
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Figure 3.5: Schematic diagram of an Abrikosov vortex lattice.

(see Figure 3.5). The increase in total free energy per unit length when two

vortices are brought together can be written

∆ε =
Φo

8π
[h1(r1) + h1(r2) + h2(r1) + h2(r2)] = 2

[
Φo

8π
h1(r1)

]
+

Φo

4π
h1(r2). (3.11)

The first term is the sum of the individual line energies, and the second term is

the interaction energy

ε12 =
Φoh1(r2)

4π
=

Φ2
o

8π2λ2
Ko

(r12

λ

)
. (3.12)

This falls off as r
− 1

2
12 e−

r12
λ at large distances and varies logarithmically at small

distances. Thus, the interaction is repulsive when the vortices have the same

sense. The force on vortex line 2 in the x direction is then given by

f2x = −∂ε12

∂x2

= −Φo

4π

∂h1(r2)

∂x2

=
Φo

c
J1y(r2), (3.13)

using Ampère’s law ∇× h = 4πJ/c. In vector form

f2 = J1(r2)× Φo

c
. (3.14)
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Generalizing to an arbitrary array of vortices

f = Js × Φo

c
, (3.15)

where now Js is the total supercurrent density due to all other vortices including

any transport current at the location of the vortex in question.

3.2 Flux Flow, Flux Creep, and Pinning

z

y

x

B

J
v

Φo

Figure 3.6: A schematic view of the flux-flow state with a transport current in a
magnetic field. The vortex lines move with velocity v along the x direction due to the
Lorentz force.

For practical applications, a superconductor must be able to carry a high

current in the presence of a strong penetrating magnetic field without resistance

or dissipation of energy. The origin of the dissipation stems from the Lorentz

force

FL =
1

c
J×B (3.16)

between the current in the superconductor and the flux lines (B = nΦo).
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Figure 3.4 gives a view of the flux-flow state with an external current density

J applied to the vortex system. The flux lines move in the x direction under the

action of the Lorentz force. Within a perfectly homogenous system the driving

lorentz force is counteracted only by the friction force Fη = −ηv, where v is the

steady-state velocity of the vortex system

v =
1

ηc
J×B, (3.17)

and η is the friction coefficient. This motion leads to the generation of an electric

field

E =
1

c
B× v =

B2

ηc2

J (3.18)

which then with E and J running parallel gives rise to power dissipation in the

system given by

P =
1

ηc2
(J×B)2 ≈ ρnJ2 B

Hc2

, (3.19)

and electric resistance

ρ =
E

J
=

B2

ηc2
≈ ρn

B

Hc2

, (3.20)

where ρn is the normal-state resistivity [65]. In order to recover the desired

property of dissipation-free current flow the flux lines have to be pinned to prevent

flux motion, i.e. v = 0. Pinning results from any spatial inhomogeneity of the

material such as impurities, grain boundaries, point defects (i.e. oxygen defects),

etc. The most effective pinning sites are artificially introduced into the material

by irradiating it with very fast heavy ions [66]. These columnar defects are

roughly 5 nm in diameter and 10’s of microns long. They are ideal for pinning

a vortex because a given defect absorbs all the free energy of the vortex core,

and forms a very deep potential well for the vortex. The vortex lattice sees the
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pinning centers as potential reliefs separated by potential barriers. Figure (3.7)

depicts a segment of a vortex line pinned by point defects, and acted upon by

the Lorentz force.

F
L

Figure 3.7: A single vortex line segment pinned by point defects and acted upon by
the Lorentz force.

In the presence of pinning the Lorentz force is always accompanied by a den-

sity gradient of vortices. Inside the superconductor the current density and the

vortex density gradient are intrinsically interrelated, J ∝ dB/dx ∝ dn/dx where

B = nΦo. This is illustrated in Figure 3.8 where a net current J = Jright − Jleft

flows in one direction along a pinned vortex array with a density gradient. The

critical current density is defined as the current density which makes the driving

Lorentz force equal to the pinning force acting on a vortex

Jc =
cFpin

B
. (3.21)

Increasing the current density beyond Jc leads to the depinning of the vortices

and hence to the reappearance of dissipation. Even for current densities below

Jc the vortex lines can jump over the pinning barriers to adjacent pinning sites

due to thermally activated motion of the vortices resulting in slow changes in

trapped magnetic fields and measurable resistivities. Thermal fluctuations pro-

duce a creep-type motion of the vortex system for current densities J < Jc. This
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JrightJleft

Figure 3.8: A vortex density gradient and a current density are always intrinsically
related.

phenomena in type II superconductors is called flux creep. The rate of hopping

between wells in the Anderson-Kim model [67] is presumed to be proportional to

R = ωoe
− Eb

KbT , where ωo is a characteristic frequency of flux line vibration, and

Eb is the activation or barrier energy.

Figure 3.9 illustrates the reduction in the barrier potential with increased

applied current density. This model is called the tilted-washboard. Any flux creep

that occurs will relieve the vortex density gradient, hence increases the barrier

potential, and slows down the flux motion with a logarithmic time dependence.

Vortices tend to hop in bundles with the bundle size increasing with decreased

current density. There are three energy scales determining the correlated motion

of the vortices. The pinning energy tends to hold a vortex into place. The inter-

action between the vortices tend to make them move coherently as bundles. The

third is the Lorentz force which tends to lower the barrier potential and unpin

the vortices. At the critical state where J ∼ Jc the Lorentz force dominates,

overwhelming both the pinning force and the intervortex interaction. This is the

single vortex limit where vortices can break loose and move somewhat indepen-

dently. At lower current densities it is more favorable for the vortices to move
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Figure 3.9: Flux pinning potential Eb with transport current density J which effectively
reduces the pinning potential. A driving force due to current (or dB/dx) favors flux
bundle jumps over barriers to adjacent pinning sites in a “downhill” direction.
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in bundles. As a bundle moves it exerts a stress on the surrounding boundaries

proportional to the perimeter of the bundle. There is an energy gain associated

with moving downhill in the tilted washboard. At smaller current densities it be-

comes more favorable for the bundles to get larger to move, and at higher current

densities the bundles are smaller. This theory is often referred to as collective

creep [60].

If the Abrikosov vortex lattice was perfectly periodic and rigid it would not

be effectively pinned by any random collection of pinning sites. Thus, the vortex

lattice will always seek to arrange itself to take the most advantage of favorable

pinning sites in order to lower its energy, but at the expense of increasing the

elastic energy of the vortex lattice by deforming it. There is a frustration be-

tween the intervortex interactions and the pinning potential landscape. In the

weak pinning limit with a dense array of weak pinning centers the equilibrium

distorted vortex lattice that minimizes the sum of these two energies is described

by the Larkin and Ovchinikov theory of collective pinning [68]. The key idea

is that the ideal periodic vortex lattice works out this frustration by arranging

itself into smaller sections of reasonable undistorted vortex lattice, where each

domain (Larkin domain) can take advantage of the local pinning landscape more

efficiently. Each segment will be rotated or displaced in some manner with re-

spect to surrounding domains increasing the elastic energy at its surface which

is the trade-off for the improved pinning energy. There is short-range order, but

the long-range order is destroyed.

The elasticity of the vortex lattice, the shear modulus C66 and the bending

modulus C44 are important considerations in determining the net pinning of the

system. The more rigid the lattice the less pinned it is. The softer the lattice

is the better it is pinned, but if it gets too soft it has no shear modulus and the
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vortex lattice melts. If the pinning is very weak as in a clean crystal without

defects the melting transition will be first order where the whole lattice melts

suddenly close to homogeneously, and absorbs some latent heat. When stronger

pinning is present the first order character of the melting vanishes, and a more

gradual melting phenomena occurs over a wider range of temperature and fields,

which implies a second order phase transition.

The critical current density decreases with increasing field or temperature.

As the vortex lattice gets very close to melting the critical current density can

suddenly shoot up as the vortex lattice becomes more deformable and adaptable

to the pinning sites. Then it will go to zero as the vortex lattice finally melts

completely. This peak effect is seen mostly in clean crystals with fairly weak

pinning.

In the other extreme limit with a dilute array of very strong pinning centers,

columnar defects, the pinning forces are so strong that they to some degree will

overwhelm the forces between the vortices. The vortex lattice is pinned very

effectively, and correlated-disorder prevails.

3.3 Magnetic Phase Diagram of High-Tc Superconduc-

tors

The high-temperature superconductors exhibit a very rich magnetic phase dia-

gram with many new features and phase transitions still being investigated. The

two main phases are the vortex solid and the vortex liquid which are separated

by the irreversibility line. However, in highly anisotropic high-Tc superconduc-

tors such as Bi2Sr2CaCu2O8 the phase diagram is much more complicated and

displays at least three distinct phases, a relatively ordered quasi-lattice or Bragg
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glass, a highly disordered entangled vortex solid or vortex glass, and a vortex liq-

uid phase. Part of the reason for the complicated phase diagram of these high-Tc

superconductors, is shorter coherence length, high anisotropy, and higher oper-

ating temperatures and thereby the enhanced role of thermal fluctuations over

large parts of the phase diagram leading first of all to vortex lattice melting and

the two distinct vortex phases, vortex solid and vortex liquid [69]. The presence

of disorder and its interplay with thermal fluctuations result in an even more

complicated mixed-state phase diagram in layered high-Tc superconductors such

as shown in Figure 3.12.

The layered structure of highly anisotropic high-Tc superconductors has a

strong effect on the thermal destruction of the vortex lattice leading to some

different features. Figure 3.10 shows the crystal structure of Bi2Sr2CaCu2O8

which is the most anisotropic superconductor known. The superconductivity is

confined to the cuprate-oxide planes, which are separated by 12 Å of insulating

layers of bismuth-oxide, strontium-oxide, and calcium-oxide layers. The thickness

of the two superconducting cuprate-oxide layers is 3 Å and the coherence length

ξc along the c-axis is only ∼0.3 Å, and hence a continuous anisotropic Ginzburg-

Landau description for this system is inappropriate as the order parameter can

change drastically from layer to layer. In the discrete Lawrence-Doniach model

[70], layered superconductors are viewed as a stacked array of two-dimensional

(2D) superconductors weakly coupled together by the Josephson effect between

adjacent layers. The order parameter Ψn(x, y) depends on the discrete variable n

and is a 2D-function within each layer. A vortex line perpendicular to these layers

is looked upon in this model as a stacking of 2D pancake shaped vortices with one

in each layer as shown in Figure 3.11. The vortex current is confined to the layers,

and two pancake vortices in adjacent layers are weakly coupled by Josephson

interactions and magnetic interactions. The strength of the interlayer coupling
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Figure 3.10: Crystal structure of Bi2Sr2CaCu2O8 superconducting compound.
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Josephson string

Pancake vortexΦo

Figure 3.11: Illustration of a single flux line structure in a strongly layered high-Tc
superconductor. The vortex line can be viewed as an array of pancake vortices in the
superconducting CuO2 planes interconnected by Josephson strings.

determines the degree of anisotropy in the magnetic properties with respect to

fields applied along the c-axis and the ab-plane. The anisotropy is defined as the

ratio of the c-axis penetration depth to the in-plane penetration depth γ = λc/λab

assuming a close to uniaxial crystal structure. This anisotropy differs significantly

for different families of materials. In YBa2Cu3O7−δ the vortex system at the

melting transition behaves as in a continuous anisotropic superconductor [71, 72].

In the other limit with a high degree of anisotropy such as for Bi2Sr2CaCu2O8,

the coupling is very weak and the behavior of the vortex system depends strongly

on the layered structure. In this material the vortex lattice melts at such low

fields [73] that the in-plane penetration depth λab ≈ 2000 Å is comparable to the

intervortex distance ao ≈ (Φo/Bz)
1/2. The irreversibility line generally scales with

the degree of anisotropy. It goes down to very low temperatures for materials
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with a high degree of anisotropy. The vortex liquid phase occupies a significant

portion of the phase diagram for Bi2Sr2CaCu2O8, whereas for YBa2Cu3O7−δ it is

much smaller.

A magnetic field applied along the ab-plane (parallel magnetic field) intro-

duces a triangular lattice of Josephson vortices in between the layers [74, 75]. A

Josephson vortex has no normal core. The vortex current flow pattern is approx-

imately elliptical, and is limited by the interlayer Josephson coupling.

The mixed-state phase diagram for a pristine Bi2Sr2CaCu2O8 crystal with

the magnetic field applied parallel to the c-axis is illustrated in Figure 3.12.

In the Bragg glass phase elastic interactions govern the structure of the vortex

solid at low fields, forming a well defined hexagonal lattice with long-range order

only weakly destroyed. A characteristic of this phase is the presence of Bragg

diffraction spots in small angle neutron diffraction (SANS) and the absence of

topological defects (dislocations). Closer to the irreversibility line at higher tem-

peratures the pinning gets weaker and the vortex lattice gets softer. Above the

irreversibility line and below the melting line the vortex lattice is still solidified,

but not pinned signifying the onset of the flux-flow state with a zero critical cur-

rent density. Finally, above the melting line the vortex lattice melts completely

due to thermal fluctuations. This phase transition has the nature of a first order

phase transition with a discontinuity in heat capacity, resistivity, and local field

B [73]. In the vortex glass at low temperatures and higher magnetic fields, dis-

order dominates, where vortex-pin interactions result in a lattice in which small

vortex lattice segments are twisted and dislocations proliferate. The crossover

from the Bragg glass occurs when the intervortex distance becomes comparable

to the underlying disorder in the system as the magnetic field is increased at

low temperatures. At this point pancake vortices are displaced when attracted
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Figure 3.12: Mixed-state phase diagram of a pristine Bi2Sr2CaCu2O8 crystal with the
magnetic field applied parallel to the c-axis, showing the three major phases, the Bragg
glass, the vortex glass and the liquid phase.
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Figure 3.13: Illustration of the sudden disorder of pancake vortices at the second peak.

to defects and to pancake vortices from neighboring lines of pancake vortices in

adjacent layers, and the close-to long-range order is destroyed [76]. This melting

phenomena is similar to the Lindemann criteria, which is responsible for melting

of the vortex lattice thermally. When the displacements become some fraction

c2
L of the vortex lattice separation ao then the vortex lattice melts. The nature

of this phase transition remains somewhat controversial. The phase transition

between the vortex glass and the vortex liquid is of second order.

The second peak effect [77], a pinning driven phase transition, occurs in a

narrow temperature window and shows in the magnetic hysteresis loop as a sud-

den sharp feature when increasing the magnetic field into the glassy state due to

a sudden increased disorder of the pancake vortices along the c-axis as depicted

in Figure 3.13. Interestingly, the critical current density is increased in the ab-

plane because of improved pinning, while it is decreased along the c-axis due to

increased disorder.

The mixed-state phase diagram for an irradiated Bi2Sr2CaCu2O8 crystal with
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Figure 3.14: Mixed-state phase diagram of an irradiated Bi2Sr2CaCu2O8 crystal with
the magnetic field applied parallel to the c-axis, showing the two major phases, the
Bose glass, and the liquid phase.
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the magnetic field applied parallel to the c-axis is illustrated in Figure 3.14.

Columnar defects introduced by irradiation with very energetic heavy ions are

expected to be the most effective pinning centers for vortices aligned parallel to

the defect structure. The correlated disorder induced by the columnar defects

acting as a coherent pinning force over an extended pinning structure largely

improves the pinning properties of the material. The pancake vortices are located

on the columnar defects at low temperatures, forming a so-called Bose glass

phase. The trapping of the pancake vortices by the columnar defects suppresses

the thermal fluctuations, which drive the melting transition, and moves it up in

phase space creating a large region with a substantial critical current density. It

is predicted that the Bose glass melts into an entangled liquid through a second

order phase transition [65].

An anomalous peak effect has been observed in magnetic hysteresis measure-

ments in irradiated Bi2Sr2CaCu2O8+δ occuring in the temperature range ∼50 K

to ∼60 K at a peak field Bpeak ∼ BΦ/3 in the Bose glass regime, accompanying

the reentrant behavior of the Bose Glass melting line [78]. BΦ is the matching

field defined as the equivalent dose, where the density of vortices is equal to the

defect density.

It has been found using magnetoresistance measurements that even in the

pancake liquid phase pancake vortices are localized mostly on the columnar de-

fects, and that the columnar defects promote formation of lines as shown in Figure

3.14. There is a recoupling of the pancake liquid in a narrow range of field and

temperature [79], which will be further discussed in Chapter 3.6.
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3.4 Zero Field Cooling and Field Cooling

To fully appreciate the vortex dynamics in a magnetic phase diagram such as

shown in Figure 3.12 it is important to understand the difference between zero

field cooling and field cooling when applying a magnetic field. When zero field

cooling (ZFC), the high-Tc superconductor is cooled down before applying a mag-

netic field. In field cooling (FC), it is cooled in a magnetic field. The different

behavior of the vortex system is best illustrated with a magnetization measure-

ment on a high-Tc superconductor such as a Bi2Sr2CaCu2O8 single crystal shown

in Figure 3.16. This data was obtained with a standard SQUID magnetometer.

The superconductor is first zero field cooled to 5 K, whereafter a 10 Oe field

is applied along the c-axis. The increasing applied magnetic field will, in the

presence of pinning, create a vortex density gradient in the sample as vortices

are being pushed into the material from outside. The slope of the vortex density

gradient resembles the forefront of a sandpile being pushed forward by a bull-

dozer. In the Bean critical state model this slope is considered to be linear and

proportional to the critical current density, which is related to the vortex density

gradient (see Figure 3.15). The Lorentz force pushes vortices in and the pinning

force is a reaction force pushing back and stabilizing. The maximum pinning

force defines the critical state equation Fpin = 1
c
Jc × B, which also gives the

definition of Jc =
cFpin

B
.

Starting out in ZFC mode at 10 Oe and 5 K denoted by 1 in the magnetization

measurement in Figure 3.16 the sample is still in the Meissner state as illustrated

in Figure 3.16(c) Bean model 1. As the temperature is increased the flux pen-

etrates in the mixed-state creating a vortex density gradient. The Bean slope

is steeper at lower temperatures because the Lorentz force required to overcome

the pinning is strong. The slope then gets flatter with increased temperature as
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Figure 3.15: The flux density profiles are straight lines in the Bean model, and the
slope is proportional to the pinning force and critical current density.

the pinning gets weaker (see Bean model 3). When crossing the irreversibility

line the pinning disappears and the slope flattens out which is seen in Figure

3.16(b) as a merging of the ZFC and FC curves. Above Tc, the sample is com-

pletely penetrated and the vortices have disappeared according to the mean field

approximation.

The sample is now field cooled, still with an applied magnetic field of 10 Oe.

The vortices reappear as the temperature is decreased below Tc. The part where

ZFC and the FC curves are merged, just below Tc, is reversible. Then, as the

temperature is lowered below the irreversibility line pinning sets in and the two

modes deviate. The pinning prevents expulsion of flux from the sample. Thus,

the magnetization does not change, even below Hc1. However, a little flux is

expelled at the surface, but doesn’t affect the bulk magnetization much. In the

Bean model it results in a small dome shaped flux density profile at the surface.

The pinning only gets stronger and stronger as the temperature is lowered, and

even entering the Meissner state does not expel the flux. Even though the mixed-

state doesn’t provide the lowest energy for the system, there is no mechanism to

annihilate them.
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Figure 3.16: Zero field and field cooling on Bi2Sr2CaCu2O8 single crystal (B||c). (a)
Phase diagram showing a 10 Oe field in the various phases. (b) Zero field and field
cooled curves with a 10 Oe field. (c) Corresponding Bean flux profiles.
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3.5 Magnetization Hysteresis

Magnetization hysteresis measurements of high-Tc superconductors is a valuable

experimental tool to gain insight into features or phases of the magnetic phase

diagram. The basic behavior of the vortex dynamics during the hysteresis is

illustrated in Figure 3.17 on a Bi2Sr2CaCu2O8 single crystal with corresponding

Bean model flux density profiles. The data was obtained in a standard SQUID

magnetometer with the magnetic field along the c-axis at 5 K.

Starting at zero field the magnetization follows the virgin curve up to the lower

critical field Hc1. This part is reversible since no flux enters in the Meissner phase,

except for a negligible surface layer within the London penetration depth (λL ∼
2000 Å). When exceeding Hc1 flux enters the sample in the form of quantized

vortices creating flux density profiles as depicted in Bean model 2. The field

value for which the Bean slopes meet in the middle, and the virgin curve merges

with the hysteresis loop, is denoted by Hp. As the field increases further, more

and more vortices are introduced into the sample, and the whole flux density

profile picture simply lifts as shown in Bean model 3. Because of the shielding

Meissner currents, there is always a little jump from the applied external field

outside to the Bean slope profiles inside the sample. When the external field is

reversed the Bean slopes reverses beginning at the surface (see Bean model 4).

This is required for the Lorentz force to now push vortices out of the system.

At the field Ho the magnetization changes sign which means there is now more

flux in the interior than outside. The magnetization is the average B-field inside

minus the applied field 4πM = B − H. Close to zero applied field there is still

plenty of trapped flux inside, and there is a small region where before the first

negative vortices enters there are no vortices leaving the system. This causes

the difference between the external field and the internal average field to keep
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Figure 3.17: Magnetic hysteresis measurement on a Bi2Sr2CaCu2O8 single crystal
(B||c). (a) Magnetic hysteresis loop. (b) Corresponding Bean flux profiles.
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increasing as the external field is driven through zero. This magnetization peak

is due partly to demagnetization factors for the plate-like geometry of the sample

[80], and partly to the inherent field dependence of the critical current density.

The magnetization curve in the negative external field repeats the sequence of

the positive region.

The magnetization curve is not quite symmetric about zero field, but is sym-

metric about the reversible line which is always implicitly present in the flux

profiles. The critical state occurs on top of the equilibrium magnetization, and

at much higher fields the hysteresis loop will merge with the reversible line. It

will simply collapse due to lack of pinning in the liquid state. At higher tempera-

tures the pinning is weaker and the hysteresis loop will merge with the reversible

equilibrium line much sooner, shrinking in both amplitude and width. The crit-

ical current density at a given field in the loop is proportional to the positive

magnetization minus the negative magnetization, multiplied by the diameter of

the sample perpendicular to the field.

Figure 3.18(a) shows a series of hysteresis loops of the same sample at 5 K,

10 K, and 15 K in a field from -7 T to +7 T. These hysteresis loops illustrate

the fact that the pinning gets weaker with increased temperature as seen from

the shrinking hysteresis loops. Figure 3.18(b) shows hysteresis loops for the same

sample at yet higher temperatures at 30 K, 40 K, and 50 K in a field from

−3000 Oe to +3000 Oe. Here, as seen from the 40 K loop, all pinning vanishes

when approaching 40 K in a small field of 600 Oe. The point where the loop

collapses and merges with the reversible line is associated with the melting line.

The 30 K hysteresis loop in Figure 3.18(b) shows a hint of the second peak

effect mentioned earlier in Section 3.3. The second peak effect is a pinning driven

phase transition, and occurs at a precise B-field at low temperatures. The ramp-
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Figure 3.18: Magnetic hysteresis measurements on a Bi2Sr2CaCu2O8 single crystal
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loops at 30 K, 40 K, and 50 K.
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Figure 3.19: Hysteretic loops of the local magnetization on a Bi2Sr2CaCu2O8+δ single
crystal at T = 25.6 K at various locations on the sample surface (B||c). The distance
between consecutive sensors is 18 µm. (( c© Copyright (1997) by Elsevire Science.
Figure 1 in Reference 1).

ing up of the applied field causes a vortex density gradient with a location de-

pendent B-field. Thus, the transition occurs at different locations in the sample.

However, the standard SQUID magnetometer measures the average B-field in the

sample thereby smearing out the sharp feature characteristic of the second peak

effect as seen in Figure 3.18(b). Using a Hall-sensor array capable of measuring

the magnetic induction in the sample at local positions one can record the local

magnetic field profile for each sensor. Such local magnetic relaxation measure-

ments were performed by Berry et al. [81] on Bi2Sr2CaCu2O8+δ single crystals at

T = 25.6 K clearly showing the sharp feature characteristic of the second peak

effect shown in Figure 3.19.
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The second peak effect can alternatively be probed with the Josephson Plasma

Resonance which is sensitive to the abrupt disorder in the pancake vortices along

the c-axis associated with the phase transition.

3.6 Structure of Vortex Liquid Phase in Irradiated

Bi2Sr2CaCu2O8−δ Crystals

The structure of the vortex liquid in highly anisotropic layered superconduc-

tors with columnar defects (CDs) produced by heavy ion irradiation is one of

the most intriguing questions in the current study of the vortex state in high

temperature superconductors. For the most anisotropic Bi2Sr2CaCu2O8−δ (Bi-

2212) superconductor without strong disorder, neutron scattering and Josephson

plasma resonance (JPR) data provide evidence in favor of a pancake liquid with

very weak correlations of pancakes in different layers [82−85]. When CDs are

introduced into these crystals a large decrease in the reversible magnetization is

observed [86], indicating that pancakes are predominantly situated on the CDs,

even in the liquid state. Recent studies of the JPR [87, 88] and c-axis transport

[89, 90] in irradiated Bi-2212 crystals reveal enhancement of c-axis correlations in

some interval of out-of-plane magnetic fields, B⊥, below the matching field, BΦ,

at temperatures T ∼ 70 K. In other words, pancakes at these fields and temper-

atures appear to form aligned segments of vortex lines inside CDs, while outside

of this region they are better described as a liquid of weakly c-axis-correlated

pancakes, as in pristine crystals. Both c-axis transport and JPR involve the

flow of Josephson currents and are thus sensitive to the misalignment of pancake

vortices between adjacent planes. CDs aligned with the c-axis will promote in-

terplane pancake alignment in a region of temperature where pancakes remain

largely localized on CDs. Even in the liquid state, where pancakes are mobile,
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filling of the available CD sites should lead to enhanced c-axis correlation from

statistical considerations alone. In previous c-axis transport measurements [89],

a dip in the magnetoresistance, ρ(B⊥), of a Bi-2212 crystal was observed at a

magnetic field corresponding to a filling factor of CDs, f = B⊥/BΦ ≈ 1/3.

So far there has been no technique available for providing quantitative in-

formation on the degree of c-axis correlation or on the length of pancake line

segments. In addition, it is unclear whether vortex interactions play a significant

role in enhancing correlation in the liquid state. Previously, a method was pro-

posed, but not yet realized, to extract the pancake density correlation function

using data for the JPR frequency as a function of B‖ at fixed B⊥ [91]. Here we

determine the average length of vortex line segments as a function of B⊥, i.e.,

of the filling factor f from transport measurements on single crystals of Bi-2212

with and without CDs. For this we have developed a method for extracting the

phase difference correlation function along the layer from measurements of the

c-axis conductivity, σc, as a function of the magnetic field component parallel to

the layers, B‖, at fixed B⊥. The component B⊥ establishes the vortex state to

be studied, while the component B‖ serves as a probe of this state, as described

below. Knowing the phase difference correlation length, we estimate the pancake

density correlation length along the c-axis.

In Josephson coupled superconductors in the presence of a c-axis current,

voltage is induced by slips of the phase difference between layers, ϕn,n+1(r, t),

as described by the Josephson relation Vn,n+1 = (�/2e)ϕ̇n,n+1. Here n labels

layers, r = x, y are coordinates in the ab-plane, and t denotes time. The c-axis

conductivity in the vortex liquid state is determined by the Kubo formula [85]

σc(B⊥, B‖) = (sJ 2
o /2T )

∫ ∞

0

dt

∫
drG(r, t), (3.22)

G(r, t) = 2〈sinϕn,n+1(0, 0) sinϕn,n+1(r, t)〉
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≈ 〈cos[ϕn,n+1(r, t)− ϕn,n+1(0, 0)]〉, (3.23)

where Jo is the Josephson critical current and s is the interlayer distance. Time

variations of the phase difference are caused by mobile pancakes [92] induced

by B⊥ and by mobile Josephson vortices induced by the parallel component B‖.

In the lowest order in Josephson coupling we split [ϕn,n+1(0, 0) − ϕn,n+1(r, t)]

into the contribution induced by pancakes and that caused by the unscreened

parallel component B‖. Assuming that B‖ is along the x-axis, we obtain a simple

expression for the contribution of the parallel component to the phase difference,

ϕn,n+1(0, 0)− ϕn,n+1(r, t) ≈ (3.24)

[ϕn,n+1(0, 0)− ϕn,n+1(r, t)]B‖=0 − 2πsB‖y/Φo.

Inserting this expression into Equations (3.22) and (3.23) we obtain

σc(B⊥, B‖) = (πsJ 2
o /T )

∫
drrG̃(r, B⊥)Jo(αB‖r), (3.25)

where Jo(x) is the Bessel function, α = 2πs/Φo, and

G̃(r, B⊥) =
∫ ∞

0

dtG(r, t, B⊥). (3.26)

The function G(r, t) describes the dynamics of the phase difference caused by

mobile pancakes. If g(B⊥, B‖) = σc(B⊥, B‖)/σc(B⊥, 0) is known in the vortex

liquid, the correlation function G(r) = G̃(r)J 2
o Φ

2
o/4πsT σc(B⊥, 0) may be found

using the inverse Fourier-Bessel transform,

G(r, B⊥) =
∫

dB‖B‖g(B‖, B⊥)Jo(αB‖r). (3.27)

The correlation lengths R and R1 of this function are defined by the relations

R2 =

∫ ∞

0

dr
rG(r)

G(0)
, R2

1 =

∫ ∞

0

dr
r3G(r)

R2G(0)
. (3.28)
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Note that R1 is related to the coefficient of the B2
‖ term in the expansion of

g(B⊥, B‖) in B2
‖ ,

g(B⊥, B‖) ≈ 1− [πsR1(B⊥)/Φo]
2B2

‖ . (3.29)

Thus R1(B⊥) can be obtained independently from data for σc(B⊥, B‖) at small

B‖.

Such a procedure to obtain the function G(r, B⊥) is valid if the vortex state

depends weakly on the Josephson coupling and hence on the probe field B‖ (which

affects Josephson coupling). Then this method is nondestructive. Let us check

first under what conditions we can neglect the effect of Josephson coupling on

the equilibrium vortex state. The energy of Josephson coupling in the correlated

area πR2 is πEoR
2/λ2

J , which should be much smaller than the temperature T to

be treated as a perturbation [91]. Here Eo(T ) = Φ2
os/16π3λ2

ab(T ). For Bi-2212,

with γ ≈ 300 and λab(0) ≈ 2000 Å, the Josephson coupling in the correlated

area is ∼0.2T at the maximum value of R found below and at T > 60 K. Thus

the effect of Josephson coupling, and hence B‖, on the equilibrium vortex state

may be neglected. For dynamical parameters, such as σc, higher order terms

in Josephson coupling describing dynamic screening of B‖ omitted in Equation

(3.24), may be important. This will be discussed below.

We anticipate that in the pancake vortex liquid state in pristine crystals the

characteristic lengths R and R1 of the correlation function G(r) are on the order

of the intervortex distance, a = (Φo/B⊥)1/2, because each pancake here is mobile

and induces phase slippage as described in Reference 92. In irradiated crystals

with CDs we anticipate much bigger R and R1 if pancakes form long segments

of lines inside CDs. Then only ends of segments contribute significantly to the

phase difference ϕn,n+1(r, t) and lead to suppression of Josephson coupling and

σc, while the effect of pancakes in neighboring layers inside the segments is much
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smaller.

In our experiments, high quality Bi-2212 crystals (Tc � 85 K) of about 1×1.5×
0.02 mm3 were used. The irradiation by 1.2 GeV U238-ions was performed on the

ATLAS accelerator (Argonne National Lab.). According to TRIM calculations

these ions produce in Bi-2212 crystals continuous amorphous tracks with diameter

4−8 nm and length 25−30 µm. Below, we present the results for the samples

irradiated with a density of CDs corresponding to a matching field BΦ = 2 T and

for a reference pristine sample.

Our c-axis conductivity measurements were carried out in a cryostat with two

superconducting magnets providing magnetic fields in orthogonal directions. The

magnets are controlled independently and provide fields in orthogonal directions.

The magnets are controlled independently and provide fields up to 8 T in one

direction and up to 1.5 T in the other direction. Samples can be oriented along

the axis of either magnet. Misalignment of the crystal c-axis with respect to

the perpendicular component B⊥ was detected by the asymmetry of ρc(B‖) with

respect to the sign of B‖. We adjusted the direction of the field components,

providing asymmetry below 5% at B‖ > 2 T and below 10% at lower fields.

The normalized conductivity g(B‖) was calculated using the average resistivity

ρc(B‖) = [ρc(B‖) + ρc(−B‖)]/2. Two Silver contact pads were deposited on both

sides of the sample using a mechanical shadow mask. The mask provided a

clean surface rim ∼0.1 mm from the sample edges and 25 µm separation between

current and potential pads. The area of the contact was ∼0.75 mm2 for current

and ∼0.05 mm2 for potential terminals. The resistance of the current pads at

room temperature was ∼2 Ω. A current of 1 mA, driven through the sample,

provides an ohmic I-V regime. For the very anisotropic Bi-2212, in our range

of the magnetic fields and temperatures, in-plane conductivity, σab ∼ 103σc [93],
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Figure 3.20: Dependence of resistivity ρc versus B2
‖ for perpendicular components B⊥,

increasing sequentially with 0.1 Tesla steps in irradiated (a) and pristine (b) crystals.

provided nearly equipotential current distribution in the ab-plane, at least in

the central area of the sample. Thus the contribution of σab to the anisotropic

conductivity is weak and can be neglected, in the limit of small pad separation.

Thus a standard 4-probe method can be used for ρc measurements instead of the

complicated multiterminal Montgomery analysis. The temperature was stabilized

within an accuracy of ±50 mK. The resistivity ρc(B‖) was measured in the B⊥

interval where g at maximum B‖ drops with B‖ at least to the value 0.2.

In Figure 3.20 we present ρc as a function of B2
‖ at different B⊥ for (a) irra-

diated and (b) pristine crystals. For irradiated crystals at low B‖ the resistance

increases quadratically with B‖ as prescribed in Equation (3.29). In contrast, for

the pristine crystal we observed that ρc increases quadratically at high B‖, but

exhibits a minimum at low fields that is not described by Equation (3.29). This

low field behavior is caused by dynamic screening of B‖ that results in additional

dissipation at low fields, due to the combined effects of motion of Josephson vor-
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tices induced by B‖ and of pancake vortices. These effects are not important at

high fields. They do not appear in the irradiated crystal due to pinning of the

Josephson vortices.

In Figure 3.21 we show the dependence g = σc(b)/σc(0) at different B⊥ on

b = B‖/(BsB⊥)1/2 for irradiated and pristine samples at different B⊥. Here Bs =

Φo/2πs2. For the pristine crystal the values σc(B⊥) at B‖ = 0 were determined

by extrapolation of ρc(B‖) from the high field quadratic dependence to zero as

shown in Figure 3.20(b) by the dashed lines. Note that for the pristine crystal

all three curves coincide at high fields, demonstrating scaling of the correlation

length R with a. Such a scaling is not observed for the irradiated crystal at

B⊥ ≤ 1.2 T, because the average distance between CDs, aΦ = (Φo/BΦ)
1/2, gives

another length scale in addition to a. More importantly, we see that g drops with
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B‖ much faster for the irradiated sample. The correlation length R(B⊥) is related

via R ≈ Φo/B̃‖s to the magnetic field B̃‖ which characterizes the scale of the drop

of σc with B‖. Here B̃‖ is the magnetic field at which flux in the area Rs is ∼Φo.

If we define the characteristic field B̃‖ as given by g(B̃‖) = 0.1, then from Figure

3.21 at B⊥ = 0.2 T, we estimate for the pristine crystal R/a ≈ 2.5, while for the

irradiated one R/a ≈ 8. As one can see from Figure 3.21, at high B‖ fields used

in our measurements, the dependence g(B‖) is close to exponential, and we use

this to extrapolate g(B‖) to higher fields. Then we determine G(r) in the interval

r < rm ≈ 0.5 µm by use of Equation (3.27). The accuracy of our experimental

data and of the inverse Fourier-Bessel transformation is not sufficient to obtain

G(r) at r > rm.

In Figure 3.22(a) we show the functions G(r/a) and in Figure 3.22(b) the same

data versus x = r/R, where the scaling length R(B⊥, BΦ) is defined by Equation

(3.28). For the pristine crystal at B⊥ = 0.1 and 0.2 T we obtain R(B⊥) ≈ a. The

curve for B⊥ = 0.2 T is plotted with a dashed line, and it practically coincides

with B⊥ = 0.1 T. For the irradiated sample we show the curves corresponding

to regions below, above, and at the position at the dip in the magnetoresistance

curve, ρc(B⊥, 0) from Reference 89 as shown in the inset. It is evident from Figure

3.22(a) that the rate of decay of correlations with distance is not a monotonic

function of B⊥ but has a minimum at a value corresponding to the dip in ρc(B⊥).

Notably, all these curves merge quite accurately in Figure 3.22(b), providing a

universal function G(x) for both pristine and irradiated samples with a single

scaling length R, although the irradiated sample is characterized generally by

two lengths a and aΦ. In comparison with pristine crystals CDs simply diminish

the effective concentration of pancakes acting on Josephson coupling by a factor

a2/R2.
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The correlation length R as a function of B⊥ is shown in Figure 3.23. It

exhibits a distinct maximum, R/a ≈ 4, at f ≈ 0.35, again coinciding with the

position of the dip in ρc(B⊥). At f = 0.35 the ratio of R(B⊥) for irradiated and

pristine crystals is about 4 times.

The length R1 obtained from the function G(r) using Equation (3.28) is ∼2R

for all studied values of B⊥. The same length determined directly from the

function g(B‖) for small B‖ using Equation (3.29) is ∼3R. Thus we estimate the

accuracy of extracting G(r) to ∼30%.

In order to determine the c-axis correlations of pancakes and to explain scal-

ing, we note that at small f pancakes are positioned mainly inside CDs and hence

the drop in phase difference correlations is caused by interruptions in the pancake

arrangement inside CDs. Namely, we suppose that the phase difference φn,n+1(r)

is induced when a columnar defect in the layer n is occupied by a pancake, but
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the site inside the same CD in the layer n+1 is empty (and vice versa). At larger

f the unpinned pancakes also contribute to the decay of correlations. Scaling

for both pristine and irradiated crystals means that ends of vortex segments in-

side CDs act on the phase difference correlations as unpinned pancakes. The net

concentration of interruptions and unpinned pancakes is 1/R2, i.e., the average

length of vortex segments is L/s ≈ R2/a2. In the most aligned vortex liquid, at

f ≈ 0.35, we estimate L/s ≈ 15. This is much larger than Lo/s ≈ 1/(1−f) ≈ 1.5

in the model of noninteracting pancakes positioned randomly on CDs. Thus we

conclude that interaction of pancakes is important for enhanced alignment inside

CDs.

In the hierarchy of interactions in the presence of CDs, both the pinning energy

per pancake and the intralayer repulsion energy of pancakes are characterized by
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the same energy scale Eo. The scale of magnetic pair attraction of pancakes in

different layers is smaller by a factor s/λab. The random distribution of CDs is

important. Repulsion between vortices in the same layer leads to a significant

increase of pancake energy inside CDs situated near those already occupied by

pancakes [94]. As B⊥ increases, some CDs become more favorable for filling

by pancakes, while others remain unoccupied. Another important point is that

favorable configurations are similar in all layers due to the geometry of the CDs.

Thus repulsion of pancakes inside randomly positioned CDs in the same layer

leads to enhancement of c-axis correlations. Another mechanism for pancake

alignment inside CDs is magnetic attraction of pancakes in adjacent layers.

In conclusion, we extract the universal phase difference correlation function

using c-axis resistivity measurements as a function of the parallel component of

the magnetic field at fixed perpendicular component. We estimated the corre-

lation length of the pancake density correlation function along the c-axis as a

function of the filling factor f of columnar defects. It first increases with f ,

reaches a maximum at f ≈ 0.35, and then drops as pancakes start to occupy

positions outside the CDs. We argue that enhancement of the alignment of pan-

cakes inside columnar defects is caused by the interaction of pancakes confined

inside columnar defects.
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CHAPTER 4

Josephson Plasma Resonance in High-Tc

Superconductors

The c-axis JPR in highly anisotropic layered cuprate superconductors originates

from the interlayer tunneling of Cooper pairs. Measurements of the JPR in these

Josephson-coupled layered systems have received much interest in recent years

because of its direct relation to the London penetration depth along the c-axis,

λc. The JPR is thus a fundamental probe of the superconducting state and an

excellent tool with which to study these highly anisotropic systems. The JPR in

zero magnetic field is given by

ωpc =
c

λc
√

εc∞
=

c

γλab
√

εc∞
(4.1)

Here εc∞ is the high frequency dielectric constant along the c-axis, and γ is the

anisotropy parameter. For T � Tc, the temperature dependence of λc is related

to the symmetry of the order parameter [21]. For T close to Tc, the appearance

of the JPR probes the onset of interlayer phase coherence [20]. Furthermore, the

JPR linewidth is a measure of the quasiparticle scattering rate, assuming no other

broadening mechanisms. In addition, the JPR probes the tunneling mechanism

and provides information about the validity of the interlayer tunneling model

[19, 95]. In a magnetic field, the JPR probes the correlation of pancake vortices

along the c-axis and is a tool with which to study the B-T phase diagram [87, 96].

The advantage of using THz-TDS to map the phase diagram is that this technique

87



allows measurements to be made over a broad frequency range at fixed magnetic

field and temperature. The terahertz regime is very important because it overlaps

both the JPR and the quasiparticle scattering rates of high-Tc superconductors

with extreme anisotropy such as the bismuth-, thallium-, and mercury-based

high-Tc superconductors.

Earlier JPR experiments included microwave cavity experiments on

Bi2Sr2CaCu2O8 at a fixed frequency on the order of 30−90 GHz and made use of

the fact that the microwave absorption resonance peak can be tuned by tempera-

ture and magnetic field [84, 87, 97]. Although these measurements demonstrated

the existence of the JPR and are useful in probing the system over a narrow range

of temperature and fields, the changing pancake vortex density in a swept field

mode alters the system. Recently, Gaifullin et al. [22] overcame this shortcoming

and probed the vortex system of underdoped Bi2Sr2CaCu2O8 in a waveguide by

sweeping the frequency continuously from 20 to 150 GHz at constant magnetic

field and temperature. However, in order to measure the JPR of less anisotropic

high-Tc superconductors such as the thallium, and mercury compounds, one needs

optical techniques. Tsvetkov et al. [19] used a grazing incidence reflectivity tech-

nique and measured the JPR in Tl2Ba2CuO6 and Tl2Ba2CaCu2O8 thin films to

be ∼840 GHz and ∼780 GHz, respectively, for T � Tc in zero field.

4.1 Theory of the Josephson Plasma Resonance

The model for a highly anisotropic high-Tc superconductor with a layered struc-

ture, as discussed in Chapter 3.3, is a stack of superconducting sheets weakly

coupled by the Josephson effect (see Figure 4.1). The order parameters are sup-

pressed between the layers, and the Cooper pairs have to tunnel through the

insulating barriers to make up the interlayer Josephson current. The Josephson
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Figure 4.1: Structure of highly anisotropic High-Tc superconductor with Josephson
coupled CuO2 layers and interstitial insulating layers.

current between two adjacent layers is determined by the Josephson current in a

single junction

J = Jo sin(ϕn+1 − ϕn), (4.2)

where ϕn,n+1 = ϕn+1 − ϕn is the phase difference between the order parameters

Ψn+1(r) = |Ψn+1(r)|eiϕn+1(r) and Ψn(r) in layer n + 1 and n, respectively, and

r = (x, y) is the in-plane coordinate.

The electrodynamics in a single junction is described by the sine-Gordon

equation [98] for the gauge-invariant phase difference ϕ(r, t)

1

c2
o

∂2ϕ

∂t2
−∇2ϕ +

1

λ2
J

sinϕ = 0 (4.3)

which, if the phase is spatially independent, reduces to

d2ϕ

dt2
+ ω2

J sinϕ = 0, (4.4)
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where

ω2
J =

2e

�C
Jo =

c2
o

λ2
J

. (4.5)

Here, co = cs/λab is the Swihart velocity, λJ is the Josephson penetration length,

and C is the junction capacitance per unit area, C = εr/4πs, where s is the

barrier thickness. The plasma oscillations come from a pulsating interchange of

energy between the coupling energy JoΦo

2π
(1− cosϕn,n+1) and the charging energy

(2en)2

2C
. Josephson [99] considered the small-amplitude oscillations of ϕ(r, t) in the

sine-Gordon equation and obtained the dispersion relation

ω2(k) = ω2
J + c2

ok
2. (4.6)

This Josephson plasmon was observed first (1968) by Dahm et al. [100] as a

resonance in a Josephson tunneling junction with dimensions of a point junction

(i.e. k = 0).

The Josephson plasmon in a layered superconductor is similarly a charge

oscillation between the Josephson coupled layers. It is excited by an ac electric

field perpendicular to the layers, and is provided by the oscillation of tunneling

interlayer Josephson currents in a phase collective mode. The JPR frequency is

determined by this interlayer Josephson current.

The time dependent equation for the phase difference ϕn,n+1(r, t) for a multi-

layered system describing the c-axis Josephson plasma resonance in the presence

of an external electric field [75] is given by

1

c2
o

∂2

∂t2
ϕn,n+1 −

∑
m

Lnm∇2ϕm+1,m +
1

λ2
J

sinϕn,n+1 =
�

8πeEJ

∂Dz

∂t
. (4.7)

Here, λJ = γs is the Josephson length, Dz is the external electric field applied

along the c-axis, EJ = Eo/λ2
J is the Josephson energy per unit area, and Eo =

sΦ2
o/16π3λ2

ab is the characteristic pancake energy. s is the interlayer spacing.
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Figure 4.2: Phase difference induced by pancake vortices in neighboring layers. (a)
Pancake vortices perfectly aligned induces no phase difference. (b) Misaligned pancake
vortices contributes a phase difference.

Lnm ≈ (λab/2s)exp(−|n − m|s/λab) is the mutual inductance between the layers

nm.

In the presence of a magnetic field, which introduces pancake vortices in the

layers, ϕn,n+1(r, t) = ϕo
n,n+1(r, t)+ϕ′

n,n+1(r, t). ϕ′
n,n+1(r, t) is the phase difference

due to the external electric field which drives the Josephson plasma resonance,

and ϕo
n,n+1(r, t) is an additional contributing phase difference due to the mis-

alignment of pancake vortices between adjacent layers. This last contribution is

most easily seen by considering Figure 4.2. The phase changes by 2π when going

around a given pancake vortex one time, and the angle is then represented by the

polar angle in the plane. If two pancake vortices in adjacent layers are aligned

as in Figure 4.2(a) the phase difference is zero. However, if they are misaligned

as in Figure 4.2(b) there will be a phase difference contribution. The Josephson

current is then J = Jo〈sin(ϕo
n,n+1 + ϕ′

n,n+1)〉, where the average is over the entire

plane (The intervortex distance ao = (Φo/Bz)
1/2 � λJ). Thus, assuming the

pancake vortices move slowly (i.e. ων � ωpc) and ϕ′
n,n+1 � ϕo

n,n+1,

J = Jo〈sin(ϕo
n,n+1 + ϕ′

n,n+1)〉 ≈ Jo〈cos(ϕo
n,n+1)〉ϕ′

n,n+1. (4.8)
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Therefore Jo → Jo〈cos(ϕo
n,n+1)〉 and ω2

p ∝ Jo〈cos(ϕo
n,n+1)〉 depends on the align-

ment of pancake vortices along the c-axis. This method is nondestructive because

the Josephson current does not affect the vortex structure in the liquid phase.

Equation (4.7) can then be put in the form of a Schrödinger equation for the

small oscillations of the phase difference ϕ′
n,n+1(r, ω) induced by an external ac

electric field along the c-axis with amplitude Dz[
ω2

ω2
o

+ λ2
J L̂∇2 − cosϕo

n,n+1(r, 0)

]
ϕ′
n,n+1 = −�iωDz

8πeEJ

. (4.9)

This simplified equation essentially captures the physics of the JPR. Here,

ωo(T ) =
c

λc(T )
√

εc∞
=

c

γλab(T )
√

εc∞
(4.10)

is the zero field Josephson plasma resonance frequency. The inductive matrix L̂ is

defined as L̂An =
∑

m LnmAm. Equation (4.9) assumes the time variations of the

pancake vortices to be small during the time 1/ω, and neglects charging effects

[101] and quasiparticle dissipation. The Josephson plasma resonance depending

on both c-axis magnetic field and temperature is given by

ω2
pc(Bz, T ) = ω2

o(T )〈cos(ϕo
n,n+1(r, Bz))〉, (4.11)

or

ω2
pc(Bz, T ) =

8π2cs

εc∞Φo

Jm(Bz, T ), (4.12)

where the maximum interlayer Josephson current is given by

Jm(Bz, T ) = Jo〈cos(ϕo
n,n+1(r, Bz))〉. (4.13)

〈· · ·〉 denotes averages over thermal and disorder displacement of pancake vortices

in adjacent layers, and Jo characterizes the strength of the interlayer Josephson

coupling at Bz = 0,

Jo(T ) =
cΦo

8π2sλ2
ab(T )γ2(T )

. (4.14)
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4.1.1 Temperature and C-axis Magnetic Field dependence of the Joseph-

son Plasma Resonance

The JPR ωpc(T ) = c
λc(T )

√
εc∞

= c
γλab(T )

√
εc∞

depends strongly on temperature be-

cause it depends on the concentration of superconducting electrons. It provides

a very direct measurement of the c-axis superfluid density nc via ω2
pc = 4πnce2

εc∞m∗
c
,

where m∗
c is the effective electron mass along the c-axis. For Bi-2212 with a

high degree of anisotropy, γ ∼ 500, the plasma frequency lies in the range of

∼150−200 GHz at low temperatures, and decreases then with increasing tem-

perature to about 20 GHz just below Tc. For the thallium compounds which are

less anisotropic, γ ∼ 150, the JPR frequency lies in the range 150 GHz to 800

GHz. For the YBCO compounds with a low degree of anisotropy, γ ∼ 10, the

JPR frequency lies in the range of ∼7 THz at low temperatures. For comparison,

the plasma frequency in a usual isotropic metal is on the order of ∼1015 Hz. The

temperature dependence of the JPR in zero field is illustrated in Figure 4.5(a).

(A) The Josephson Plasma Resonance as a Probe to study the Sym-

metry of the Superconducting Order Parameter

The JPR is directly related to the c-axis penetration depth λc(T ) which provides

information about the symmetry of the superconducting order parameter. In the

BCS theory the temperature dependent normal carrier fraction xn(T ) is expo-

nentially activated, whereas d-wave pairing predicts xn(T ) to follow a power law

[102] of the form

xn(T ) ∝
(

T

Tc

)α

. (4.15)

For the in-plane penetration depth component λab(T ), α = 1 for d-wave pairing

in a high-Tc superconductor, at least at low temperatures [103], and α = 2
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Figure 4.3: Normalized London penetration depth λ2
L(0)/λ

2
L(T ) versus reduced temper-

ature T/Tc. The values of α corresponds to the in-plane penetration depth component
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for d-wave pairing with strong impurity scattering [104]. Because λL(T ) and the

superconducting fraction xs(T ) are related through xs = 1−xn = [λL(0)/λL(T )]2

[105], d-wave theories predict that

λ2
ab(0)

λ2
ab(T )

= 1−
(

T

Tc

)α

. (4.16)

Figure 4.3 shows the theoretical curves for λ2
L(0)/λ2

L(T ) as a function of reduced

temperature T/Tc for d-wave pairing following the power law behavior in Equa-

tion (4.16) for λab(T ). Also plotted is the s-wave curve for the BCS theory, and

the curve for the classical Gorter-Casimir two-fluid model (α = 4 in Equation

(4.16)) [106].

The temperature dependence of the out-of-plane penetration depth compo-

nent λc(T ) is complicated by the Josephson interaction between the layers, and
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depends strongly on doping, anisotropy and electronic structure. A much weaker

temperature dependence of λc(T ), as compared to λab(T ), has been observed in a

number of materials, e.g. Y-123 [107], Hg-1201, Hg-1223 [108], and La-214 [109].

It has been suggested that this weaker temperature dependence is a consequence

of the in-plane anisotropy of the c-axis hopping integral t⊥ ∝ (cos kx − cos ky)
2

where the zeros of t⊥ coincides with the node directions of dx2−y2 symmetry [21].

This in-plane momentum dependence of t⊥ originates from the wave function

overlap between the Cu 4s orbital and the O 2p orbital and is a common feature

of high-Tc superconductors without Cu-O chain bands. This coherent tunneling

mechanism where parallel momentum is conserved between the layers leads to

a T 5 dependence at low temperatures [21]. The T 5 contribution is small and

has been observed in clean tetragonal samples of relatively low anisotropy com-

pounds, e.g. Hg-1201 [108] (although, it has also been observed in Bi-2212 [110]),

where the coherent hopping of holes is the main contribution to the superfluid

response. However, the incoherent conduction process with anisotropic impurity

scattering (impurity assisted hopping) is expected to vary as T 2 at low tempera-

tures [21, 111]. This is because the anisotropic impurity scattering enhances the

contribution of the node directions, which in turn enhances the temperature de-

pendence. When disorder effects are important in the c-axis superfluid response,

the T 5 behavior of λc(T ) will be completely masked by the T 2 behavior. The

temperature dependence of λc(T ) can be expressed as

ω2
pc(T )

ω2
pc(0)

=
λ2
c(0)

λ2
c(T )

= 1− A

(
T

Tc

)α

. (4.17)

Here α determines the temperature dependence and the parameter A depends

strongly on the ratio of Tc and ∆o [108].
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(B) Dissipation and Dispersion Effects of the Josephson Plasma Res-

onance

The intrinsic JPR linewidth ∆ωpc is due to interlayer tunneling of quasiparticles,

and thus provides a direct measurement of the c-axis quasiparticle conductivity

σc
qp. The quasiparticle dissipation is determined by the imaginary part of the

dielectric function, I(ω) ∝ Im[1/εc(ω)]. When �ω � ∆, the dielectric function

can be expressed as

εc(ω) = εc∞

[
1− ω2

pc

ω(ω + i0+)
− ω2

qp

ω(ω + i/τ)

]
. (4.18)

ωqp is the plasma frequency of the quasiparticles given by

ω2
qp =

4πnqpe
2

εc∞m∗
c

, (4.19)

and τ is the quasiparticle scattering time. When ωτ � 1, I(ω, T ) can be written

as

I(ω, T ) ∝
4πσqp(T )

εc∞[
1− ω2

pc

ω2

]2

+
[

4πσqp(T )

εc∞ω

]2 , (4.20)

where the quasiparticle conductivity [112, 113] is given by

σc
qp =

εc∞ω2
pce

2τ

4π
. (4.21)

The JPR occurs at ω = ωpc, and the linewidth is given by

∆ωpc =
4πσqp

εc∞
. (4.22)

When applying a magnetic field along the c-axis two additional mechanisms

contribute to the linewidth, namely, inhomogeneous Josephson interaction in

the presence of randomly positioned vortices (inhomogeneous broadening), and

dissipation of the plasma mode into vortex oscillations [114]. In magnetic fields

96



below ∼7 T in Bi-2212 the linewidth was found to be determined mainly by

inhomogeneous broadening, whereas in higher fields or lower pinning, dissipation

of the plasma mode into vortex oscillations may become the dominant mechanism

of line broadening [114].

It has been established, both experimentally [115] and theoretically [116], that

there exists two Josephson plasma modes with very different dispersion relations.

The longitudinal mode (k‖c) displays a sharp resonance, and is excited by an

oscillating electric field (E‖c), whereas the transverse mode (k⊥c) has been found

to display multipeaks, and is excited by an oscillating magnetic field (H‖ab) [115].

The dispersion relation for the longitudinal Josephson plasma propagating along

the c-axis in the case of σc
qp = 0 [101] can be expressed as

ωL
pc(kz) � ωpc

√
1 + εc∞µ2

[
(s + D)2

sD

]
k2
z . (4.23)

µ is an effective charge screening length (Debye length) along the c-axis due to the

superconducting carriers and quasiparticles (µ � λL). s and D are the widths

of the superconducting and insulating layers, respectively. Typical values for a

high-Tc cuprate are µ ∼ 2 Å, s ∼ 6 Å, and εc∞ ∼ 25. Thus the dispersion of the

longitudinal plasma is very weak, compared to the transverse one propagating

along the layers, ωT
pc(k) � ωpc

√
1 + (λck)2, which shows a strong dispersion, and

eventually tends to a linear dependence for k → ∞ [116].

(C) The Josephson Plasma Resonance as a Probe to study the Vortex

Structure

A magnetic field applied parallel to the c-axis introduces misaligned pancake vor-

tices in the layers which suppresses the critical current density and the JPR as de-

scribed in the previous section. The JPR, ω2
pc(Bz, T ) = ω2

o(T )〈cos(ϕo
n,n+1(r, B))〉,
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Figure 4.4: Magnetic and Josephson interactions between pancake vortices in adjacent
layers strive to align the pancake vortices along straight lines, while thermal fluctuations
and pinning effects cause misalignment.
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Figure 4.5: (a) JPR versus temperature in zero field. (b) JPR versus c-axis applied
field at constant temperature in the liquid phase.
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depends strongly on temperature because Jo(T ) drops with temperature (ω2
o(T ) ∝

Jo(T )). 〈cos(ϕo
n,n+1(r, B))〉, which describes the local thermal and disorder aver-

age of the cosine of the gauge-invariant phase difference between adjacent layers

n and n + 1, depends both on temperature and magnetic field. When the pan-

cake vortices form straight lines perpendicular to the layers, 〈cos(ϕo
n,n+1(r, B))〉 is

unity. However, when the pancake vortices are misaligned along the c-axis caused

by either thermal fluctuations or pinning effects (see Figure 4.4), a nonzero phase

difference is introduced which suppresses the interlayer Josephson coupling, and

results in the reduction of 〈cos(ϕo
n,n+1(r, B))〉 from unity. Thus, the JPR is sen-

sitive to the correlations of pancake vortices along the c-axis, and is an excellent

tool with which to study the various vortex phases and phase transitions of the

B-T vortex phase diagram. The magnetic field dependence of the JPR is illus-

trated in Figure 4.5(b). The stronger the field, the smaller is 〈cos(ϕo
n,n+1(r, B))〉,

and the JPR frequency decreases approximately as ω2
pc ∝ 1/B in the pancake

liquid phase of Bi-2212 [117].

The majority of JPR measurements have been performed in microwave cav-

ities at a fixed frequency (i.e. 45 GHz). The drawback of the microwave cavity

technique is that the temperature and magnetic field have to be tuned to bring

the Josephson plasma resonance into the resonant frequency of the cavity. This

changes the phase of the vortex system, and makes it difficult to follow the con-

tinuous development of the vortex phase correlations.

These problems are illustrated in Figure 4.6, where the JPR is measured in

a microwave cavity at a fixed frequency of 45 GHz in a Bi2Sr2CaCu2O8+δ sin-

gle crystal [118]. The JPR is shown as a function of c-axis field for decreasing

temperatures. Notice the resonance is shifting to higher fields from 83.0 K to

32.9 K. This is normal behavior because the disorder decreases by lowering the
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Figure 4.6: JPR measurements in a microwave cavity. Surface resistance Rs of
Bi2Sr2CaCu2O8+δ single crystal at 45 GHz as a function of field (B||c) at different
temperatures. Rs is measured with Eac parallel to the c-axis. ( c© Copyright (1995) by
The American Physical Society. Figure 3 in Reference 2).

temperature in the liquid state, and a bigger field is then needed to reduce the

JPR into the resonant frequency of the cavity. However, below 25.5 K the sys-

tem goes from the liquid phase into the vortex phase, and pinning sets in. A

vortex density gradient then develops across the sample from ramping up the

field in zero field cooled mode. This induces additional disorder, and the disorder

only increases when further lowering the temperature because the pinning gets

stronger, causing the JPR to shift to lower frequencies from 25.5 K to 5.5 K. This

artifact is caused by the fact that the field was being swept.
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4.2 C-axis Josephson Plasma Resonance Observed in Trans-

mission in Tl2Ba2CaCu2O8 by use of Terahertz Time-

Domain Spectroscopy

This section presents experimental data on the JPR in Tl2Ba2CaCu2O8 (Tl-2212)

as a function of temperature in zero magnetic field, in both the time-domain and

the frequency-domain. These are the first observations of the JPR in a high-Tc

superconducting material in transmission. Measuring the JPR in transmission

improves the SNR allowing measurements of the JPR and its linewidth closer to

Tc than previous measurements performed in reflection using a grazing incidence

reflectivity technique [19].

The experiments were performed using THz-TDS in transmission, with a

bandwidth covering approximately 0.2−2.5 THz. A commercial-based regen-

eratively amplified Ti:AlO2O3 operating at 1 KHz provided nominally 1.0 mJ,

∼100 fs pulses for the experiment. The detailed experimental set-up is shown in

Figure 4.7. Approximately 10% of the incoming beam is split off at the beam

splitter and used for the electro-optic detection. The principle of operation of the

THz-TDS spectrometer is explained in Chapter 2.1 (see Figure 2.1 and Figure

2.6). The beamspot at the sample position was roughly 3 mm in diameter.

Tl-2212 has the same crystal structure as Bi-2212 shown in Figure 3.10 where

Bi and Sr are exchanged with Tl and Ba, respectively [119]. The Tl-2212 film

(700 nm) was grown on a 10 × 10 mm2 MgO substrate in a two-step process.

First an amorphous TBCCO film is deposited by laser ablation. Next it was an-

nealed at high temperature in oxygen to form the 2212 phase. The film exhibited

a sharp transition (0.2−K width) at a temperature of 103.4 K.

In order to excite the c-axis JPR a component of the electric field (E-field) of
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Figure 4.7: Experimental set-up of THz-TDS spectrometer. The sample is positioned
in a cryostat with optical access.

the terahertz pulse has to be along the c-axis of the sample. The plasma frequency

along the ab-plane is close to the metallic regime ∼1.5 eV, whereas the JPR along

the c-axis lies in the terahertz range. Therefore, by tilting the sample at an angle

incident p-polarized THz radiation will be transmitted at the JPR when there

is an E-field component parallel to the c-axis and completely reflected when the

E-field is parallel to the ab-plane. However, as will be discussed in Section 4.3,

the angular dependence of the JPR does not entirely conform to this picture, and

the JPR is also observed at smaller incident angles. The anisotropic dielectric

function can be written as

εab(ω) = εab∞

(
1− ω2

pab

ω2

)
, εc(ω) = εc∞

(
1− ω2

pc

ω2
+

4πiσc

εc∞ω

)
. (4.24)

Here ωpab and ωpc are the in-plane and out-of-plane plasma frequencies, respec-

tively. Assuming ω � ωpab, and not taking into account dissipation and c-axis

dispersion effects [101, 120], we find that electromagnetic waves can only propa-
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gate in a narrow window above the plasma edge,

ωpc < ω <
ωpc√

1− sin2 θ
εc∞

≈ ωpc

(
1 +

sin2 θ

2εc∞

)
. (4.25)

(See Appendix (A.2)). It is a well-known fact that the electromagnetic wave in

an anisotropic media does not have a purely transverse character, but also has a

longitudinal component, unless it travels along the principal axes.

The configuration of the sample with respect to the terahertz beam is shown in

Figure 4.8. P -polarized THz radiation, incident at an angle of 45◦ to the surface

normal, is transmitted through the sample. In order to minimize the effect of the

substrate, two sets of averaged scans are performed at each temperature. The

first set on the sample (film plus substrate), and the other set on a bare reference

substrate. The FFT of the sample is then divided by the FFT of the reference.

This ratio gives the complex transmission coefficient of the film as a function of

frequency.

Figure 4.9(a)-(d) shows the electric field amplitude of the terahertz pulse

in the time-domain transmitted through the sample at different temperatures.
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Figure 4.9: Electric field of the THz pulse in the time-domain transmitted through
Tl-2212 film on MgO at (a) 110 K, (b) 90 K, (c) 70 K, and (d) 10 K, showing the
development of the JPR with decreasing temperature.
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Figure 4.9(a) shows the terahertz pulse transmitted through the sample at 110 K,

above the onset of superconductivity. At 90 K, Figure 4.9(b), the onset of c-axis

coherent tunneling is just perceptible as a slight oscillation following the main

pulse. This damped ringing appears as a broad JPR peak in the frequency-domain

(see Figure 4.10), where the damping is due to quasiparticle scattering. When

the temperature is lowered to 70 K, Figure 4.9(c), the terahertz pulse displays an

even stronger oscillation amplitude due to a reduction in scattering. This results

in a narrowing of the JPR peak (see Figure 4.10). The terahertz pulse at 10 K,

Figure 4.9(d), displays a pronounced ringing that lasts for at least 20 ps following

the main pulse. These traces reveal how the oscillation frequency increases as the

temperature is lowered, resulting in a shifting of the JPR to higher frequencies.

Figure 4.10 shows the transmission amplitude as a function of frequency for

the Tl-2212 thin film for different temperatures. The figure clearly illustrates the

temperature dependence of the JPR, which appears as a sharp peak at ∼705 GHz

to 680 GHz for low temperatures (10−40 K) and decreases with temperature to

∼170 GHz at 98 K. The JPR vanishes close to 99 K which is ∼4 K below Tc

(see Figure 4.10). The linewidth of the JPR peak increases with temperature,

which indicates an increase in the quasiparticle scattering rate. The appearance

of the JPR as a peak at the resonance in the transmission spectrum agrees with

the electromagnetic analysis, in which propagation of the electromagnetic wave

occurs only in a narrow window above the plasma edge. The decrease in the

JPR frequency with temperature is consistent with a decreasing superconducting

electron density on approaching Tc from below. Terminating the temporal scans

of the THz pulses at 20 ps eliminates the effect of the first Fabry-Perot reflection

that is due to the 1 mm MgO substrate. This truncation might cause a slight

additional broadening of the JPR peaks in Figure 4.10 in the temperature range

10−40 K.
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Figure 4.10: Transmission amplitude versus frequency for Tl-2212 film on MgO. The
JPR peak broadens and shifts to lower frequencies with increased temperature. FFT,
fast Fourier transform.

Using Equation (4.10), and taking εc∞ = 9.1±0.7 for the high frequency di-

electric constant for the electric field along the c-axis [19], we obtain for the c-axis

penetration depth, λc(10K) = 22.4±0.6 µm, and λc(98K) = 94±9 µm. Similar

results were obtained on a 600 nm Tl-2212 film grown on LaO substrate (Tc =

105 K). The temperature dependence of the JPR frequency, plotted in Figure

4.11 displays the same behavior as that of the Tl-2212 film on MgO substrate

but with a higher lying JPR which could be attributed to a slight difference in

the anisotropy. Here we obtain, for the c-axis penetration depth, λc(10K) =

20.3±0.5 µm (ωpc/2π ≈ 780±5 GHz), and λc(90K) = 35.2±1.4 µm (ωpc/2π ≈
450±10 GHz).

To summarize, we have applied THz-TDS in transmission to measure the c-
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Figure 4.11: JPR frequency versus temperature for Tl-2212 film on both MgO (solid
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axis JPR in Tl-2212 as a function of temperature. These measurements agree

well with previous measurements of Tl-2212 by use of a grazing incidence re-

flectivity technique [19], and we were able to extend the measurements to tem-

peratures approaching Tc. We probed the onset of the c-axis phase coherence to

∼0.95Tc. These measurements demonstrates THz-TDS as an improved technique

to measure the JPR, with an improved SNR compared to the grazing incidence

reflectivity technique, and without the need for a magnetic field to tune the JPR

as in previous microwave cavity experiments.

4.2.1 Symmetry of the Superconducting Order Parameter

The temperature dependencies of λ2
c(10K)/λ2

c(T ), as determined from Equation

(4.10), for both Tl-2212 grown on MgO substrate (Tc = 103.4 K) and Tl-2212

grown on LaO substrate (Tc = 105 K) are shown in Figure 4.12. λ2
c(10K)/λ2

c(T )
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Figure 4.12: Superfluid fraction versus reduced temperature for Tl-2212 film on both
MgO (solid circles) and LaO (solid triangles) substrate with Tc = 103.4 K and Tc
= 105 K, respectively. The solid line, and the broken line represent ω2

pc(T )/ω2
pc(0) =

1−A(T/Tc)α fitted to respectively Tl-2212 on MgO with A = 1.0±0.1 and α = 2.6±0.1,
and Tl-2212 on LaO with A = 0.9±0.1 and α = 2.4±0.1.

is well expressed as 1−A(T/Tc)
α with A = 1.0±0.1 and α = 2.6±0.1 for Tl-2212

on MgO, and A = 0.9±0.1 and α = 2.4±0.1 for Tl-2212 on LaO. The small

difference in α may be due to the difference in anisotropy of the two films since

the JPR for Tl-2212 on MgO is ωpc(10K) = 705 GHz, and ωpc(10K) = 780 GHz

for Tl-2212 on LaO. This nearly quadratic temperature dependence in the c-axis

penetration depth suggests that impurity assisted hopping [21] is the dominating

tunneling mechanism in Tl-2212. A similar temperature dependence has been

reported in YBa2Cu3O7−δ [107], Bi2Sr3CaCu2O8+δ [121], La1.85Sr0.15CuO4 [109],

and HgBa2Ca2Cu2O8+δ [108]. However, a T 5 dependence has been observed in

low anisotropic HgBa2CuO4+δ [108], and in slightly underdoped Bi-2212 [110]

suggesting that the behavior is not entirely universal. Further theoretical inves-

tigations are needed to develop a comprehensive understanding of the behavior

of the order parameter in high-Tc superconductors.

108



4.2.2 C-axis Quasiparticle Damping of the Josephson Plasma Reso-
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Figure 4.13: JPR linewidth versus temperature for Tl-2212 film on MgO substrate.
The inset shows the JPR at 10 K fitted to a Lorentzian function, given by Equation
(4.20), to obtain the linewidth.

Figure 4.13 shows the JPR linewidth as a function of temperature for Tl-2212

on MgO substrate obtained by fitting the JPR’s in Figure 4.10 to Equation (4.20)

at low temperatures (see inset to Figure 4.13), and directly from Figure 4.10 at

higher temperatures (because the JPR’s do not fit as well at higher temperatures).

The corresponding quasiparticle conductivity along the c-axis is determined from

Equation (4.22) and shown in Figure 4.14. Below Tc the quasiparticle conduc-

tivity σc
qp falls rapidly, and then increases slightly below 20 K. The temperature

dependence of σc
qp is qualitatively different from the temperature behavior of the

ab-plane conductivity σab
qp usually observed in high-Tc superconductors below Tc

[122]. σab
qp generally increases below Tc displaying a broad peak at lower tem-

peratures. This increase below Tc has been attributed to a rapid increase in the
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Figure 4.14: C-axis quasiparticle conductivity versus temperature for Tl-2212 film on
MgO substrate (Tc = 103.4 K).

quasiparticle lifetime in the superconducting state. The absence of such a peak

in σc
qp presented here indicates that the c-axis transport is not influenced by the

development of the long transport lifetimes observed in the ab-plane. The fact

that σc
qp remains finite at low temperatures further implies d-wave symmetry be-

cause of a finite quasiparticle density of states at the Fermi level, which has also

been observed in Bi-2212 [123]. However, it is unclear whether the quasiparticle

conductivity σc
qp can be obtained accurately from the linewidth, because super-

conducting films might have normal regions, and no definite conclusions can be

made from this data.

Comparing σc
qp for Tl-2212 obtained here to σc

qp obtained for Y-123 by Hos-

seini et al. [124], and for Bi-2212 by Gaifullin et al. [110] one sees the same

qualitative behavior. The values for Y-123 with anisotropy ∼10 lies in the

range ∼100 (Ω−cm)−1 while Bi-2212 with anisotropy ∼500 lies in the range

∼0.02 (Ω−cm)−1. σc
qp for Tl-2212 with anisotropy ∼150 lies a factor of ∼50
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higher than Bi-2212, and a factor of ∼100 below Y-123. It is interesting to note

that σc
qp approximately scales with ω2

pc as Bi-2212:Tl-2212:Y-123 [110, 124]. This

relationship was established with La2−xSrxCuO4 as well [125].

4.3 Angular Dependence of the Josephson Plasma Reso-

nance in Tl2Ba2CaCu2O8

The JPR is excited by an ac electric field applied perpendicular to the CuO2

layers. According to linear electrodynamic wave theory for a uniaxial anisotropic

crystal (see Appendix A.2) the JPR FFT amplitude should decrease with de-

creasing incident angle and completely vanish at 0 degrees. Furthermore, the

transmitted wave and the JPR is expected to decrease with increasing thickness

of the Tl-2212 superconducting film, and vanish for a thickness on the order of

∼300 nm. However, the JPR in Tl-2212 is perfectly observable in transmission at

a thickness of 700 nm, and also at 0 degrees incidence. Consequently, this behav-

ior makes it impossible to extract parameters of the sample such as the dielectric

function, etc. by fitting the JPR data to the complex transmission coefficient

given by Equation (2.34). Thus, other mechanisms leading to the excitation or

generation of the JPR seem to be at play.

Extensive X-ray diffraction measurements [126] reveal a rotation and tilt of

the grains in the Tl-2212 films typically ranging from 0.1 to 0.5 degrees, and in

extreme cases as much as 2 degrees. Thus, these films are considered nearly single

crystals, and it is appropriate to commence an investigation of additional excita-

tion or generation mechanisms of the JPR besides the E-field of the THz pulse.

Such mechanisms could possibly be attributed to the magnetic field component

of the THz pulse, nonlinear effects in the Tl-2212 film, or even the distribution,

111



θi

Er

E

Kr

Ki

Ei

K

Z

c-axis

a-
ax

is

Bi

Br

B

θi

Br

B

Kr

Ki

Bi

K

Z

c-axis

a-
ax

is

Ei

Er

E

(a) (b)

Figure 4.15: Configuration of the Tl-2212 film with respect to the THz beam for (a)
p-polarization, and (b) s-polarization.

orientation, or size of the grains.

The effect of the magnetic field (B-field) component of the THz pulse, com-

pared to the E-field component, is examined in the following two experiments.

The configuration of the Tl-2212 film with respect to the THz beam is shown in

Figure 4.15. Incident p-polarized THz radiation, Figure 4.15(a), has the E-field

component in the plane of incidence while the B-field component is parallel to

the ab-plane for all incident angles.

The optical path length of the THz radiation traveling in the film increases,

for both configurations, somewhat with increasing incident angle according to

Snell’s law. However, since the additional path length is close to negligible if the

refractive index of the superconducting film is much greater than the index for

air, this effect can safely be neglected.

Figure 4.16 shows the JPR for p-polarized THz radiation at 0, 15, 30, and 45

degrees incidence. The JPR peak increases monotonically ∼10% in going from
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0 degrees, with no E-field component along the c-axis, to 45 degrees with ∼70%

of the E-field parallel to the c-axis. This is shown in Figure 4.17. For incident

s-polarized THz radiation (see Figure 4.15(b)), the B-field component is in the

plane of incidence while the E-field component is parallel to the ab-plane for all

incident angles. The decrease of the JPR peak for s-polarization as a function of

angle is shown in Figure 4.17 for comparison with the p-polarized case. The JPR

peak decreases monotonically ∼10% in going from 0 degrees, with maximum B-

field component along the ab-plane, to 45 degrees angle with ∼70% of the B-field

parallel to the ab-plane. These results indicates that the B-field component of

the THz radiation is at least as influential as the E-field component. Roughly

the same behavior is observed at 70 K (Not shown here).

Consider the following for a plausible explanation of the JPR dependence

on the B-field component of the THz radiation, and hence the observed lack of

dependence on the angle of incidence. Figure 4.18 illustrates an oscillating B-field

applied along the y-axis of a layered system with dimensions L along the x-axis,

and infinity along y and z. If uniformly applied within the ab-plane a screening

current J is induced which gives rise to an electric field Ez along the c-axis in

accordance with Maxwell’s equations and the London equation as follows.

4π

c
J = − 1

λ2
c

A, (4.26)

∇×B =
4π

c
(J+ σqpE) +

ε

c

∂

∂t
E, (4.27)

∇× E = −1

c

∂

∂t
B, (4.28)

where J = (0,0,Jz), A = (0,0,Az), B = (0,By,0), and E = (0,0,Ez). The current

parallel to the c-axis penetrates much deeper than the one parallel to the ab-

plane because λc/λab ∼ 150 for Tl-2212. This current along the c-axis drives
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Figure 4.18: Schematic diagram of a layered high-Tc superconductor with B-field com-
ponent Bosc‖y. Bosc induces a screening current J which gives rise to an E-field along
the c-axis at the edges for the transverse plasma excitation.

the oscillating electric field Eosc which excites the transverse Josephson plasma

[115]. The normal mode of the electromagnetic wave inside the superconductor

is obtained by setting By ∝ exp[ikx − iωt], resulting in the condition

k2 +
1

λ2
c

− 4π

c2
iωσqp − ε

c2
ω2 = 0, (4.29)

where k = k1 + ik2 = ω/c
√

ε(ω). Using the boundary conditions for By(x =

±L/2) = Bosc, By is expressed as

By = Bosce
−iωt

(
eikx + e−ikx

ei
kL
2 + e−i kL

2

)
, (4.30)

and the electric field Ez is then given by

Ez = −i
ω

c

∫ x

Bydx = −ωBosc

ck
e−iωt

(
eikx + e−ikx

ei
kL
2 + e−i kL

2

)
. (4.31)

Ez, thus represents an oscillating E-field along the c-axis which is due to the

screening currents induced by the oscillating B-field component of the incident
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THz pulse. The induced screening current is a surface phenomena and penetrates

only weakly into the layered high-Tc superconductor at the edges. The dimensions

of the Tl-2212 superconducting thin film are 10×10 mm2, and 700 nm thick. The

THz beam diameter is ∼3 mm, and interacts only with a portion of the film.

λc ∼ 20 µm for Tl-2212, and λab ∼ 170 nm at 20 K. However, the THz radiation

is transmitted through the Tl-2212 film and the B-field component creates a

more complicated current flow pattern as the THz pulse propagates into the film.

The results do show evidence of dependence on the B-field component of the

THz radiation, and it is plausible that the current flow is also influenced by the

distribution and size of the grains. In fact, a picture of the surface of the Tl-2212

film, obtained using atomic force microscopy (AFM), reveals a rough surface

with grain sizes on the order of 1 to 1.5 µm (see Figure 4.19). Furthermore,

channels with diameters up to ∼2 µm and hundreds of nm deep are distributed

throughout the thin film. Thus, providing an alternative flow pattern for the

induced screening current enabling it to excite the JPR within the interaction area

of the THz beam. Nonetheless, the observed behavior of the B-field component

in Figure 4.17 cannot account for the entire missing angular dependence of the

JPR.

In order to continue to look for the origin of the generation mechanism of the

JPR in the Tl-2212 film, and hence the observed lack of dependence on the angle

of incidence, the polarization of the emitter and receiver are crossed. The JPR as

an emission resonance could be indicated by circularly polarized THz radiation

emitted from the Tl-2212 film. Figure 4.20 shows the JPR for s-polarized THz

radiation at 0, 15, 30, and 45 degrees incidence with the receiver set up to detect

p-polarized THz radiation. The extinction ratio of the polarizers is ∼1:50. The

FFT amplitude ratio is obtained by dividing by a reference with emitter and

receiver both set up for p-polarization. The JPR peak decreases monotonically
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Figure 4.19: Atomic force microscopy surface picture of 700 nm thick Tl-2212 thin film
showing height profiles along line A and B.
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by ∼40% in going from 0 degrees, with maximum B-field component along the

ab-plane, to 45 degrees angle with ∼70% of the B-field parallel to the ab-plane.

The FFT amplitude ratio for the JPR for p-polarized incident THz radiation with

the receiver set up to detect s-polarized THz radiation is obtained by dividing

by a reference with emitter and receiver both set up for s-polarization. The

extinction ratio is ∼1:30. The JPR peak as a function of angle is shown in

Figure 4.21 for both cases of crossed polarizations. The JPR peaks are generally

∼10−15% of the value when the polarizations are not crossed (see Figure 4.17).

The observation of the JPR with crossed polarizations might partly be caused by

imperfect extinction ratios, and is too weak to substantially support evidence of

generation of the JPR in the Tl-2212 film.

In a continued search for the excitation mechanism of the JPR, and the miss-

ing angular dependence we now look for nonlinear effects in the film. Figure 4.22

shows the JPR at 30, 60, 100, 140 and 175 mW optical power at the ZnTe emitter

for p-polarization at 0 degrees incidence at the Tl-2212 film. Figure 4.23 shows

the JPR peak versus optical power for both p- and s-polarizations at 45 degrees,

and at 0 degrees incidence at the Tl-2212 film. There is a slight decline in the

JPR peak ∼6% with increasing power from 30 to 180 mW for all three cases, but

the angular dependence is unaffected by the optical power.

In conclusion, we speculate that the missing (or very weak) angular depen-

dence of the JPR is attributed to the roughness of the film which is shown in

Figure 4.19. The incident THz radiation will always have an E-field component

along the c-axis by random scattering in the film as inferred from Figure 4.17.

Furthermore, the B-field component of the THz radiation induces a screening

current, which runs in the channels of the film, and gives rise to an E-field along

the c-axis. The contribution from the B-field component seems, according to
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Figure 4.17, to be as important as the E-field component of the THz radiation

in generating the JPR which is observed for all angles between 0 and 45 degrees

incidence.

4.4 Direct Evidence for Linelike Vortex Liquid Phase in

Tl2Ba2CaCu2O8 Probed by the Josephson Plasma Res-

onance

The structure of the different vortex phases and the nature of the phase tran-

sitions in the magnetic phase diagram of high-Tc superconductors has been the

subject of intense study over the past several years [65]. It has been established

rather conclusively, both experimentally [73, 127] and theoretically [128], that

there exists a first-order phase transition at which the vortex lattice melts into

a vortex liquid where at least in-plane long-range order is lost. This melting

transition depends strongly on the anisotropy of the superconductor [129]. The

anisotropy is defined as γ = λc/λab, where λc and λab are the London penetration

depths along the c-axis and ab-plane, respectively. In YBa2Cu3O7−δ (Y-123),

which has a low degree of anisotropy γ ∼ 8, the vortex lattice melts by a first-

order phase transition into a linelike liquid [128, 130] up to rather high magnetic

fields ∼104−105 G [127] (see Figure 4.24(c)). In the case of extreme anisotropy

γ ∼ 500 and γ ∼ 150 as in, respectively, Bi- and Tl-based high-Tc superconductors

a model has been introduced, whereby the vortices are stacks of two-dimensional

“pancake” vortices in the CuO2 layers, which are weakly coupled by Josephson

and magnetic interactions [131]. Such a vortex lattice of pancake vortices has close

to long-range order at low magnetic fields and temperatures, where the pancake

vortices form aligned stacks (vortex lines). However, the interactions between
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the pancake vortices in adjacent layers are very weak and these vortex lines are

easily destroyed due to misalignment of the pancake vortices by either thermal

fluctuations at higher temperatures, or by random pinning. In Bi2Sr2CaCu2O8+δ

(Bi-2212), which is the most anisotropic superconductor known, the vortex lat-

tice undergoes a first-order melting at magnetic fields below ∼500 G [129] (see

Figure 4.24(a)).

The structure of the vortex liquid phase in the anisotropic superconductors

Y-123 and Bi-2212 has been the focus of numerous experimental and theoretical

studies [22, 130, 132]. It has been found that at the melting transition in Bi-2212

vortex lines are disintegrated into a liquid of pancakes [22, 132], in contrast to

Y-123, where vortex lines are preserved above the melting line [130]. Here we

report on the structure of the vortex liquid in Tl-2212 which has an intermediate

anisotropy in between Bi-2212 and Y-123. We show that with respect to melting

Tl-2212 behaves as Y-123.

The most direct way to clarify the nature of these vortex phases and the

phase transitions between them is to measure the interlayer phase coherence

in each vortex phase. One of the most powerful experimental probes for the

interlayer phase coherence in highly anisotropic layered superconductors is the

c-axis Josephson plasma resonance [20, 22], which is directly related to the c-axis

correlations of pancake vortices in the mixed-state [117]. The JPR is a Cooper

pair charge oscillation mode perpendicular to the CuO2 layers. In zero magnetic

field the JPR is a direct probe of the Josephson coupling between the layers [110].

The JPR frequency is given by ω0(T ) = c/
(
λc(T )

√
ε0

)
= c/

(
γλab(T )

√
ε0

)
. Here,

c is the speed of light, and ε0 is the high-frequency dielectric constant along the

c-axis. In the presence of a c-axis magnetic field B, the JPR can be written as
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[117]

ω2
p(B, T ) = ω2

0(T )〈cos(ϕn,n+1(r, B))〉. (4.32)

Here, 〈cos(ϕn,n+1(r, B))〉 is the local thermal and disorder average of the cosine of

the gauge-invariant phase difference between adjacent layers n and n+1, and r is

the in-plane coordinate. When the pancake vortices form straight lines perpendic-

ular to the layers, ϕn,n+1(r, B) vanishes. However, when the pancake vortices are

misaligned along the c-axis, due to either thermal fluctuations or pinning effects,

a nonzero phase difference is induced which suppresses the interlayer Josephson

coupling, and results in the reduction of 〈cos(ϕn,n+1(r, B))〉 from unity. Thus, the

JPR probes the correlations of pancake vortices along the c-axis, and provides

information on various vortex phases and phase transitions between them.

Recent JPR microwave cavity measurements in a Bi-2212 crystal by Shibauchi

et al. [132] show a jump in the interlayer phase coherence factor, 〈cosϕn,n+1〉
from ≈0.7 to ≈0.3 at the first-order melting transition (see Figure 4.25). These

data together with magnetization measurements, suggest that the melting of the

vortex lattice is accompanied by disintegration of vortex lines into a pancake

liquid, where c-axis correlations are lost. Recently Gaifullin et al. [22] probed

the vortex system of a slightly underdoped Bi2Sr2CaCu2O8+x crystal by sweeping

the frequency in the range 20−150 GHz in a waveguide at constant magnetic field.

They found a similar change in the interlayer phase coherence factor 〈cosϕn,n+1〉
from ≈0.7 to ≈0.4 at the first-order melting transition. Quantitative analysis

[117] of the JPR data confirmed that correlations of pancake vortices between

neighboring layers in the liquid phase in Bi-2212 far away from Tc are practically

absent.

However, Bulaevskii et al. [133] found, by analyzing JPR data [22, 132]

evidence for a line liquid phase in Bi-2212 for small melting fields (< 20 G) near
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Jump due
to Melting

Figure 4.25: (a) Jump in the interlayer phase coherence factor in Bi-2212 single crystal
at the melting transition as a function of magnetic field. The jump in the factor
illustrates the simultaneous melting and decoupling of the vortex lattice. (b) A scaling
of the factor as a function of normalized field. ( c© Copyright (1999) by The American
Physical Society. Figure 4 in Reference 3).
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Tc (see Figure 4.24(a)). At low magnetic fields, Bm < BJ = Φ0/λ2
J (λJ = γs is

the Josephson length where s is the interlayer distance), the intervortex distance

is much larger than the meandering length. The meandering length rw is defined

as the average in-plane distance between two pancake vortices in adjacent layers

which belong to the same vortex line (stack of pancake vortices). In this single

vortex regime the Josephson coupling in the region occupied by a given vortex

stack is not suppressed by other vortices. The pancake vortices are thus well

correlated in neighboring layers both below and above the melting line.

To probe c-axis correlations in less anisotropic high-Tc superconductors such

as thallium and mercury compounds, where the JPR lies in the THz range,

one needs optical techniques. Demonstrated techniques are either the grazing

incidence reflectivity technique [19], or terahertz time-domain spectroscopy (THz-

TDS) in transmission [20]. Here we measure the JPR by use of THz-TDS in

transmission. THz-TDS has a better SNR, in comparison to the grazing incidence

reflectivity technique, allowing measurements close to Tc [20]. The experimental

set-up of the THz-TDS spectrometer is shown in Figure 4.7. The Tl-2212 film

(700 nm) was grown on a 12 × 12 mm2 MgO substrate as described in Section 4.2,

and exhibited a sharp transition temperature (0.2−K width) at Tc = 103.4 K.

The sample was positioned inside an optical cryostat with optical access, between

a pair of permanent magnets with the magnetic field oriented along the c-axis.

All experiments were performed in field cooled mode. In order to excite the JPR,

p-polarized THz radiation, incident at an angle of 45◦ to the surface normal, is

transmitted through the sample [20]. To obtain the transmission amplitude of

the Tl-2212 film, we performed two sets of averaged scans at each temperature

and field. The first set was performed on the sample (film plus substrate), and

the other set was performed on a bare reference substrate. The fast Fourier

transform of the sample was then divided by the fast Fourier transform of the
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reference. This ratio gave the complex transmission coefficient of the Tl-2212

film as a function of frequency.

Figure 4.26 shows the electric field of the THz pulse transmitted through the

sample. Figure 4.26(a) shows the JPR in the time-domain at 70 K and 80 K. This

clearly illustrates a downward shift in the oscillation frequency as the temperature

is increased from 70 K to 80 K. Figure 4.26(b) shows the JPR in the time-domain

at 70 K in zero magnetic field and in a 2.5 kG c-axis applied field. In the time-

domain, the effect of the magnetic field is clearly seen to both shift the oscillation

frequence downward, due to the induced disorder of the pancake vortices, and

also to distort the THz pulse caused by inhomogeneous broadening of the pancake

vortices, which is seen as an increase of the linewidth in the frequency-domain

(see Figure 4.27).

In the frequency-domain, Figure 4.27 shows the transmission amplitude as

a function of frequency for the Tl-2212 film (a) in zero field from 70 to 100 K,

and (b) in a 2.5 kG field applied along the c-axis. The JPR frequency is seen to

decrease with increasing temperature, and a drastic drop in frequency is observed

for each of these temperatures when applying the 2.5 kG field along the c-axis.

In Figure 4.28(a) we show the decrease of the JPR frequency with temperature

at B = 0 and B = 2.5 kG. The drop in the JPR frequency due to the applied

c-axis field, shown in Figure 4.28(b), is seen to increase from ∼115 GHz at 70 K

to ∼185 GHz at 85 K. This increase indicates the crossover from the vortex solid

phase to the vortex liquid phase. The corresponding decrease of the interlayer

phase coherence factor 〈cosϕn,n+1〉 with temperature is shown in the inset in

Figure 4.28(b). We see here a very smooth and gradual reduction of this factor

without any abrupt changes, which is in contrast to what was observed for Bi-

2212 (see Figure 4.25).
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The interlayer phase coherence factor, 〈cosϕn,n+1〉 = ω2
p (B, T ) /ω2

0 (0, 20K),

as a function of temperature at different magnetic fields is shown in Figure 4.29.

This factor is practically temperature independent from 20 to 70 K at B =

0.4 kG, and from 20 to 50 K at B = 1.8 kG. This suggests that the pancake

vortices are well pinned and largely unaffected by thermal fluctuations at lower

temperatures in the vortex solid phase. 〈cosϕn,n+1〉 decreases approximately

linearly with field at low temperatures from 20 to 50 K (see Figure 4.30). Such a

field dependence was also observed in the vortex solid phase in Bi-2212 [22, 132].

At higher temperatures the drop of 〈cosϕn,n+1〉 with magnetic field becomes

stronger, in agreement with theoretical predictions [134]. We note that Dulić et

al. [135] did not observe a change in the field dependence of the JPR frequency,

ωp(B), with temperature in grazing incidence reflectivity measurements up to

70 K. The important point is that there is no indication of a sudden change of

the field dependence as a function of temperature, which would have signaled

a disintegration of vortex lines into a liquid of pancake vortices at the melting

transition.

Suppression of the Josephson coupling due to pinning-induced meandering of

vortex lines at low temperatures has been considered in Reference 136. At small

fields the coherence factor decreases linearly with field, 〈cosϕn,n+1〉 = 1−B/Bw,

where the typical field Bw is a measure of the meandering length rw, Bw ≈
Φ0/πr2

w ln(γs/rw), and the meandering length, in turn, is determined by a balance

between the pinning energy Up and the Josephson energy, EJ , r2
w ∼ Up/EJ . Our

data give Bw ≈ 7.4 kG corresponding to rw ≈ 20 nm. This value for Bw has

to be compared with the lower value Bw ≈ 1.2 kG for the more anisotropic

Bi-2212 [22], the similar value of Bw for a different Tl-2212 film Bw ≈ 14 kG

[135], and the much higher value Bw ≈ 30 T for the less anisotropic underdoped

YBa2Cu3Ox [135]. This confirms that Bw is mainly determined by the anisotropy
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Figure 4.29: Interlayer phase coherence factor <cosϕn,n+1> versus temperature in
Tl-2212 with four different magnetic fields applied along the c-axis. The drop in the
curves at high temperatures indicates the crossover from the vortex solid phase to the
vortex liquid phase.
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of the material.

We will now discuss the role of thermal fluctuations on the suppression of

〈cosϕn,n+1〉 at higher temperatures. At all magnetic fields we find that thermal

fluctuations start to contribute to the suppression of the Josephson coupling

above a certain characteristic temperature. Although pinning probably has some

influence even above this temperature, it is instructive to compare the observed

behavior of the JPR frequency with its expected behavior in clean materials.

The important feature, induced by thermal fluctuations, is the vortex lattice

melting. Recent extensive numerical simulations of the anisotropic frustrated

XY model [128, 137−140] and Bose model (interacting elastic strings) [141] allow

us to reliably predict both the location of the melting transition and the nature

of the liquid phase based only on the intrinsic superconducting parameters, s,

λab, and λc. These results are obtained within the “frozen field” approximation

and are quantitatively valid for superconductors with not very high anisotropy,

γ < λab/s, and at sufficiently high fields, B > Φ0/4πλ2
ab. In this regime the

relevant properties of the melting transition in a pinning-free material can be

summarized as follows: (i) the crossover between linelike and pancake regimes of

melting takes place in the field interval B = CΦ0/(γs)2, where C ≈ 3− 10 [139];

(ii) in the linelike regime the melting temperature is given by Tm ≈ 0.13ε0a/γ with

ε0 = Φ2
0/(4πλ2

ab) and a =
√

Φ0/B [142]; (iii) the latent heat of the transition per

vortex per layer, ∆e, is almost field-independent with ∆e ≈ 0.015sε0; (iv) in the

linelike regime the loss in the Josephson energy at the melting point constitutes

half of the latent heat and the jump of the coherence factor is given by ∆〈cosϕ〉 ≈
0.05γ2s2B/Φ0.

In the case of Tl-2212 the anisotropy factor γ ≈ 100−150 is comparable with

the ratio λab/s and the magnetic coupling between pancake vortices in neighbor-
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ing layers may influence the melting transition. We will estimate the shift of the

melting point caused by the magnetic coupling using perturbation theory. Using

the approach of Reference 143, we calculate the correction to the crystal free

energy per vortex per layer due to the magnetic coupling as:

δfM = −2πsε0a
−2

∑
Q
=0

exp (−Q2 〈u2〉 /2)

(1 + λ2Q2)Q2
, (4.33)

where Q are the reciprocal lattice vectors, and 〈u2〉 is the mean-squared fluctua-

tion of the vortices. At the melting point 〈u2〉 ≈ c2
La2 with cL ≈ 0.25 [139, 141],

and one can keep only the first 6 terms in the Q-sum corresponding to the small-

est vectors Q0 with Q2
0 =

(
8π2/

√
3
)

a−2. At high fields, B > Φ0/ (4πλ2
ab), we

obtain the following estimate for δfM at the melting point:

δfM(Tm) ≈ −0.044
sε0a

2

4πλ2
ab

(4.34)

The shift of the relative melting temperature due to a small perturbation of the

crystal free energy is given by

δ
Tm

sε0

= −Tm

sε0

δfM
∆e

(4.35)

and, we obtain for the corrected melting point:

Tm

sε0

≈ 0.13
a

γs

(
1 + 0.23

a2

λ2
ab

)
(4.36)

We calculate the temperature and field dependence of the interlayer phase

coherence factor, 〈cosϕn,n+1〉, in the vortex solid phase neglecting pinning but

accounting for Gaussian thermal fluctuations of pancakes [134], taking into ac-

count both Josephson and magnetic coupling between the layers. Calculations are

based on the Lawrence-Doniach model in the London limit, which is completely

defined by the components of the London penetration depth (λc and λab = λc/γ),

and the lattice parameter along the c-direction, s = 15 Å. We extract λc directly
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from the JPR frequency assuming ε0 = 9.1 provided in Reference 144. We find

that the best agreement between calculation and experiment is achieved using

γ = 150. This value is consistent with the resistivity anisotropy of Tl-2212 single

crystals near Tc [145]. The calculation results together with the experimental

data, are shown in Figure 4.31. The position of the expected melting transition

shown by arrows was estimated from Equation (4.36). Melting close to the ar-

rows is supported by our recent dc transport measurements and magnetization

measurements (unpublished). The field dependence is completely smooth near

the expected melting transition. These results strongly implies that vortex lines

are preserved across the melting transition, at least in the low magnetic field

portion of the phase diagram.

In conclusion, we have measured the JPR in Tl-2212 thin films using THz-

TDS in transmission. We used the JPR frequency measurements as a probe to

study the interlayer phase coherence as a function of temperature and magnetic

fields above and below the melting line. Our results show that in Tl-2212 vortex

lines exist in the liquid state in magnetic fields below 2.5 kG. We conclude that

Tl-2212, at least in the low magnetic field portion of the phase diagram, behaves

as Y-123, and not as Bi-2212 despite the closer anisotropy ratios.
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Figure 4.31: Comparison between experimental data (marks) for the interlayer phase
coherence factor <cosφn,n+1> in Tl-2212 at 70, 75, and 85 K, and numerical calcu-
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and assuming the anisotropy factor to be γ = 150.
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4.5 Current-driven Vortex State in Tl2Ba2CaCu2O8 Probed

by the Josephson Plasma Resonance

The properties of driven periodic structures subject to quenched disorder, in-

cluding charge-density waves, Wigner crystals and vortex lattices, have become

one of the central issues in the phenomenology of nonequilibrium statistical me-

chanics [146−151]. In the context of the vortex lattice, Koshelev and Vinokur

[147] predicts the driven system to undergo a dynamic phase transition at some

threshold current between the fluidlike and crystallike moving states. In other

words, an applied current puts forth a scenario where a pinned vortex lattice

flows plastically at first as some vortices are depinned, and then becomes more

ordered at higher applied currents as more vortices are depinned, possible form-

ing a moving ordered vortex lattice. Thus, beyond some critical value a dynamic

phase transition may occur to a more ordered state, characterized by a change

from incoherent to coherent vortex motion.

Previous experimental techniques employed in studying the transformations

of the moving states (dynamic phase transitions) include detection of anomalies

in the I-V characteristics [151, 152], and changes in the correlation length which

reflects the order of the moving lattice [153−155]. Until now, the most direct

measurement is by neutron diffraction, where the continuous development of the

order of the vortex lattice can be followed as long as Bragg diffraction spots are

detectable [153].

Here we present the first studies of the current-driven vortex lattice in a high-

Tc superconductor by directly probing the interlayer phase coherence with the

JPR. The experiments were performed on Tl-2212 thin films using THz-TDS

in transmission (see Figure 4.7) [20]. The Tl-2212 film (700 nm) was grown
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on a 12 × 12 mm2 MgO substrate as described in Section 4.2, and exhibited

a sharp transition temperature (0.2−K width) at Tc = 102.5 K. Current leads

were attached along the ends of two opposite sides, thus providing a homogeneous

current flow across the film. The sample was positioned inside an optical cryostat

with optical access, between a pair of permanent magnets with the magnetic field

oriented along the c-axis. All experiments were performed in field cooled mode.

The configuration of the sample with respect to the THz beam, and obtaining the

complex transmission coefficient of the Tl-2212 film as a function of frequency is

described in Section 4.2.

Figure 4.32 shows the interlayer phase coherence factor as a function of cur-

rent in the ab-plane at 10, 60, 80, and 90 K in a 2.5 kG c-axis applied magnetic

field. The current exerts a Lorentz force on the vortices. At 10 K the effect

of the current is very small because the vortices are strongly pinned in the vor-

tex solid phase. At 60 K the pinning is weaker, and the drop of the factor is

more pronounced with increasing current. One sees a weak knee structure at

approximately ∼20 mA, where the slope of the factor is increased. The scenario

where some vortices are moving while others are still pinned is well described by

the ice flow case. When a frozen river starts to melt, rivers of water will flow

through where the ice is melted, while islands of unmelted ice is still stuck. At

80 K the first slope of the factor is approximately the same as for 60 K with

increasing current up to the knee structure which is occuring approximately at

∼16 mA for 80 K. The second slope is slightly steeper than for 60 K. Then the

80 K factor displays a very pronounced increase at approximately ∼32 mA, which

was not observed for 60 K. The pinning is even weaker for 80 K, and the vortex

lattice is driven into the flux-flow state at higher currents. At the point where

all the vortices flow, the order of the vortex lattice actually improves. This is

the effect which was predicted by Koshelev and Vinokur [147] described earlier,
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Figure 4.32: Interlayer phase coherence factor <cosφn,n+1> versus applied ab-plane
current in Tl-2212 in 2.5 kG c-axis magnetic field at 10, 60, 80, and 90 K.

where the vortex lattice is proposed to undergo a dynamic phase transition at

some threshold current between the fluidlike and crystallike moving states. The

same phenomenon is observed for 90 K, where the first knee structure occurs at

approximately ∼9 mA, and the second at approximately ∼24 mA. The factor

displays a third knee structure for both 80 K (∼36 mA) and 90 K (∼31 mA),

which is observed to decrease in current and get steeper from 80 K to 90 K. Thus,

this indicates pinning is not completely absent, even in the vortex liquid phase.

When the Tl-2212 film is field cooled in zero current, the system enters a

disordered, pinned nonequilibrium state as it passes through Hc2 and remains

disordered as it is further cooled to 10 K because the pinning free energy barriers

are to high to cross. As the applied current is then increased, the pinning potential

is reduced and some vortices are depinned, resulting in a slight disorder of the

vortex lattice. At 80 and 90 K, the pinning potential has been reduced so much

that at a certain threshold current the system is completely driven into the flux-
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flow state where the vortex-vortex interactions become important, resulting in

the recrystalization of the vortex lattice. After the applied current is turned off,

and the temperature raised, it is found that the order of the system has increased

compared to when the system has not been subjected to the application of a

current. It is interesting to note that the order of the vortex lattice depends on

the history of the sample’s current in addition to temperature and field.
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CHAPTER 5

Ultrafast Conductivity Dynamics of Hole Doped

Transition Metal Oxides

Ultrafast optical pump-probe experiments are a proven tool to temporally dis-

criminate dynamic processes such as electron-electron, electron-phonon, and spin-

lattice interactions to better understand the properties of materials. During the

past several years these techniques have been increasingly applied to complex

materials, such as hole doped transition metal-oxides including high-Tc super-

conductors and mixed valence manganites. In these materials even the ground

state properties are strongly influenced by many body effects such as on-site

coulomb repulsion, Hund’s-rule coupling, and polaronic effects. Importantly, the

defining characteristic of many of the hole doped transition metal oxides is the

conductivity as a function of temperature, applied magnetic field, or frequency.

As has been seen in Chapter 4, THz spectroscopy is an excellent tool to probe

the low-lying excitations of materials. Therefore, by combining THz spectroscopy

with optical excitation, dynamics can be resolved in the time-domain providing

another experimental handle with which to understand material properties.

The experimental set-up of the time-resolved optical pump THz probe spec-

trometer in transmission, used for these experiments, is shown in Figure 5.1.

The concepts of the experiment and how to obtain the induced conductivity as

a function of pump-probe delay time is explained in Chapter 2.3.
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Figure 5.1: Experimental set-up of optical-pump terahertz-probe spectrometer in trans-
mission.

5.1 Nonequilibrium Superconductivity in

Y1−xPrxBa2Cu3O7 Thin Films

THz-TDS is an ultrafast optical technique that has found wide application in

the study of many systems having far-infrared excitations. In the context of

correlated electron materials, THz-TDS has been successfully applied to study

high-Tc superconductors and, more recently, materials such as the ferromagnetic

metal SrRuO3 [156, 157]. We can expect an increase in the use of THz-TDS to

study a variety of other correlated electron materials given its unique ability to

directly and easily measure σre(ω) + iσim(ω) from ∼50 GHz to several THz.

Importantly, the freely propagating THz pulses generated in THz-TDS are
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temporally coherent with the generating optical pulses - this permits measure-

ment of the THz conductivity with picosecond resolution following optical exci-

tation of the sample. Several groups have been developing this technique, termed

time-resolved THz spectroscopy (TRTS), to study various systems including pho-

togenerated electrons in liquids such as hexane, or semiconductors such as GaAs

or radiation damaged silicon-on sapphire [158−160]. Previous work in our group

has focused on using TRTS to study high-Tc superconductors and colossal mag-

netoresistance manganites [57, 58, 161]. Here we present our most recent mea-

surements on Y1−xPrxBa2Cu3O7 thin films.

Figure 5.2(a) and (b) show the conductivity at 60 K and 95 K respectively

(Tc = 89 K) for the near optimally doped film. The phenomenological two-fluid

model fits the data quite well (shown in dashed line in Figure 5.2(a)) below Tc

where the imaginary conductivity is dominated by the 1/ω dependence of the

superfluid [57, 162]. Above Tc, a standard Drude model fits the data (dashed

line Figure 5.2(b)). Upon optical excitation, there is a decrease in the imaginary

conductivity due to superconducting pair breaking with a corresponding increase

in the real component (not shown). The induced change in σim(ω) is shown at

60 K in figure 1(c). There is a decrease that rapidly recovers on a ps timescale that

is due in large part to superconducting pair reformation. Figure 5.2(d) shows the

induced change in σim(ω) at 95 K (above Tc) which is due quasiparticle relaxation.

The dynamics can be followed by plotting the induced change in the con-

ductivity as a function of time at a specified frequency. The induced change

in the imaginary conductivity (60 K) is shown in Figure 5.3. With increasing

frequency, the lifetime decreases (see inset). In the limit of zero quasiparticle

fraction, this induced change would be solely due to superconducting pair recov-

ery. However, there are quasiparticles present (at 60 K the initial quasiparticle
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fraction is ∼40%) so (see inset in Figure 5.2(b)) the quasiparticle fraction makes

a nonnegligible contribution to σim(ω). Importantly, at higher frequencies this

fraction becomes increasingly important since the superconducting pair fraction

response goes as 1/ω. This offers a potential explanation for the decrease in

the lifetime of σim(ω) with increasing frequency: at low frequencies σim(ω) is

dominated by the superconducting pair recovery, but at higher frequencies the

relaxation is increasingly influenced by an additional relaxation pathway asso-

ciated with the quasiparticles. This is further supported in that the lifetime of

σ(ω)re is quite short (∼1.5 ps independent of frequency). Speculating on the ori-

gin of this additional relaxation pathway, it could be due to the relaxation of the

excited quasiparticles into the nodes of the superconducting gap along kx = ky.

Since this process is faster than the superconducting pair recovery, this would

suggest that the excited quasiparticle relax into the nodes of the gap followed by

pair recovery.

Finally, the results of the superconducting pair recovery time as a function

of temperature are consistent with previous results [57]. For optimal doping, the

lifetime at 20 K is about 1.5 ps (at 1.0 THz) increasing to 3.0 ps near Tc. Above

Tc, the lifetime of σim(ω) (which is no longer a measure of the superconducting

recovery time, but rather the initial quasiparticle cooling) drops to 1.5 ps (this

is also consistent with the discussion in the previous paragraph). In contrast, in

the x = 0.3 films the lifetime is ∼3.5 ps independent of temperature even above

Tc. This lifetime is the same as that measured in our YBa2Cu3O6.5 films. These

results suggest that for the optimally doped films, the dynamics are influenced

by the closing of the superconducting gap, and that for the underdoped films, the

pseudogap plays a role in determining the observed dynamics. Further experi-

ments are ongoing to more fully elucidate the observed dynamics as a function

of temperature and doping.
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5.2 Colossal Magnetoresistance Manganites

5.2.1 Basic Theory of Colossal Magnetoresistance Manganites

Mixed valence manganites such as doped La1−xCaxMnO3 have been studied since

the 1950’s. Particularly, in the past 10 years research has intensified, primarily

because of an increased interest in the colossal negative magnetoresistance ob-

served for certain levels of doping (see Figure 5.4).

Figure 5.4: Temperature profile of resistivity of a La1−xCaxMnO3 (x = 0.3) single
crystal at various magnetic fields. A strong negative magnetoresistance is observed close
to the Curie temperature. ( c© Copyright (2000) OPA (Overseas Publishers Association)
N. V. Figure 1, Chapter 1 in Reference 4).

The magnetic phase diagram of La1−xCaxMnO3 is shown in Figure 5.5. The

parent compound is best described as an antiferromagnetic charge transfer insu-

lator (typical of undoped transition metal oxides) with the relevant band orig-

inating from the manganese 3deg orbital. With increasing doping with a di-

valent substituent such as Ca one gets a mixture of Mn3+ and Mn4+ (hence
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the term “mixed valence manganites”). The magnetic phase diagram displays a

richness of phases including a canted ferromagnet, crossing over to a ferromag-

netic metal, etc. Eventually at all dopings with increased temperature there is

a crossover to a paramagnetic phase. These experiments (Chapter 5.2.2) will

focus on La1−xRexMnO3 (Re = Ca, Sr with x = 0.3) which displays ferromag-

netic metallic behavior crossing over to a paramagnetic behavior at ∼260 K for

Re = Ca and 350 K for Re = Sr.

Figure 5.5: Magnetic phase diagram of La1−xCaxMnO3. The abbreviations mean ferro-
magnetic metal (FM), ferromagnetic insulator (FI), antiferromagnetism (AF), canted
antiferromagnetism (CAF), and charge/orbital ordering (CO). ( c© Copyright (2000)
OPA (Overseas Publishers Association) N. V. Figure 1, Chapter 7 in Reference 4).

The important entity of interest is the manganese atom. It is situated in

an octahedrally coordinated environment surrounded by six oxygen ions. Its 3d

electrons experience, due to crystal field effects, a splitting of the levels as shown

in Figure 5.6. The t2g levels comprise an electronically inert core of total spin 3/2.

The higher level eg electrons form the conduction band. Due to large Hund’s-rule

coupling the spins are all aligned on a given manganese, meaning the eg spin is

slaved to the t2g spin.
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Figure 5.6: Crystal ligand-field splitting of five-fold degenerate atomic 3d levels into
lower t2g (triply degenerate) and higher eg levels (doubly degenerate levels of Mn3+).
Jahn-Teller distortion of MnO6 octahedron further lifts each degeneracy as shown in
the figure.

Conduction proceeds via what is historically known as double-exchange (see

Figure 5.7) in which transport is via hopping from one manganese to another via

an intermediate oxygen. There is a hopping integral tij = t cos θij that charac-

terizes the conductivity that depends on the relative angle of the spins between

nearest neighbor Mn ions. In other words, in the paramagnetic phase where there

is no spin alignment the hopping integral is much smaller than in the ferromag-

netic regime where the spins are aligned, making it easier for an eg electron on

one Mn ion to jump to another Mn ion. However, magnetic scattering alone

cannot account for the large values of the resistivity observed in the paramag-

netic regime. Thus, the lattice degrees of freedom must also be considered. First,

there can be a distortion of the Mn-O-Mn bond angle (see Figure 5.8) which is

defined by a tolerance factor f = (ra + ro)/
√
2(rb + ro). f measures the lattice
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Figure 5.7: Illustration of the double-exchange mechanism via the transfer integral tij
(hopping matrix).

mismatch between the AO-planes and the adjacent BO2-planes, where ra is the

average A-site radius for La, Ca, or Sr, and rb is the Mn ionic radius. So, in

decreasing ra the tolerance factor gets smaller which means the Mn-O-Mn bond

angle is distorted from 180 degrees. The reduced overlap between the manganese

and oxygen orbitals then reduces the hopping integral.

Perhaps even more important are the Jahn-Teller distortions of the O6 oc-

tahedra surrounding the Mn ions. When the eg orbital is occupied the orbital

degeneracy of the eg level is removed by the distortion of the ideal octahedral

structure with this being a more favored energy state. With increasing doping

with Ca2+ the long range coherent Jahn-Teller distortion is decreased, as there is

no such distortion for Mn4+. In this case the Jahn-Teller distortion is dynamic,

traveling with the carriers. The paramagnetic phase has misaligned spins which

lowers the hopping rate. This means the dynamic Jahn-Teller distortions can fol-

low the electrons around as they hop. This results in the trapping of the electrons

which causes an increased resistance in the paramagnetic phase. When the tem-
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Figure 5.8: Schematic crystal structure of La1−xCaxMnO3. The tolerance factor f
measures the distortion from the perovskite-based cubic structure. f ∼ 1: ideal per-
ovskite structure. 0.96 < f < 1.0: rhombohedral structure. f < 0.96: orthorhombic
structure.

perature is decreased below the Curie point the relative spin alignment increases,

resulting in an increase in the hopping rate. That means that the Jahn-Teller

distortion can no longer trap the carriers which means there is a large increase

in conductivity in the ferromagnetic phase.

5.2.2 Ultrafast Conductivity Dynamics in Colossal Magnetoresistance

Manganites

The observation of “colossal” negative magnetoresistance (CMR) in the hole-

doped manganite perovskites (R1−xDxMnO3 where, e.g., R = La, Nd and D =

Ca, Sr) demonstrates the sensitivity of electronic conduction to the underlying

magnetic structure in these materials [163, 164]. Experimental and theoretical

work has also revealed the importance of the lattice and orbital degrees of freedom

in determining the electronic properties of CMR materials above and below Tc

[165, 166]. Nonetheless, it is still not clear, especially for T � Tc, what the relative

importance of phonons is in comparison to double-exchange in determining σ.
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Ultrafast optical spectroscopy has provided significant insight into electron

dynamics in metals [167−169], and more recently, transition metal oxides [56, 170,

171]. Using similar ultrafast techniques, we address the relative contributions of

spin fluctuations and phonons in determining the conductivity in the manganites

from ∼10 K to 0.9Tc.

THz-TDS is an ultrafast optical technique in which electric field transients

are used to measure the complex conductivity of a material. Since this is a

coherent technique, a sample can be optically excited and then probed with a

terahertz pulse to measure induced conductivity changes with picosecond (ps)

resolution. We use this method, known as time-resolved terahertz spectroscopy

(TRTS), to measure ps conductivity transients in La0.7Ca0.3MnO3 (LCMO) and

La0.7Sr0.3MnO3 (LSMO) thin films. The dynamics occur on two time scales.

A fast, ∼2 ps, conductivity decrease arises from optically induced modification

of the effective phonon temperature. The slower component, related to spin-

lattice relaxation, has a lifetime that increases upon approaching Tc from below

in accordance with an increasing spin specific heat. Our results demonstrate that,

at low temperatures, ∂σ/∂T is primarily determined by thermally disordered

phonons while spin fluctuations dominate close to Tc.

The TRTS experiments were performed on LCMO and LSMO epitaxial thin

films grown on LaAlO3 substrates using pulsed laser deposition [172]. For very

thin films (∼150 Å), island growth can alter the film properties, but the thicker

films used in these experiments (∼1000 Å) display bulk behavior [173]. Mag-

netization measurements yield Tc = 250, 360 K for the LCMO and LSMO films

respectively. The experiments utilized a regeneratively amplified Ti:Al2O3 system

operating at 1 KHz and producing nominally 1.0 mJ, 150 fs pulses at 1.5 eV. The

absorbed fluence for LCMO (LSMO) was 170 (110) µJ/cm2 corresponding to an
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Figure 5.9: Temperature dependence of the THz transmission and real conductivity.
(a) Transmitted electric field at various temperatures for a 90 nm thick LCMO film (see
legend). (b) Real conductivity versus frequency for LCMO at various temperatures. (c
and d) The value of the real conductivity at 0.7 THz as a function of temperature for
LCMO and LSMO thin films. The lines are fits using Equation (5.1).
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initially excited carrier density of ∼ 8×1019 (4×1019) cm−3. The THz pulses were

generated and detected using electrooptic techniques. A He cryostat permitted

temperature dependent measurements from 4−400 K. Further details of the film

growth and TRTS experiments are described elsewhere [161, 172].

Figure 5.9(a) shows the THz electric field transmitted through a LCMO film at

various temperatures without optical excitation. The magnitude decreases with

decreasing temperature while the phase is relatively constant. This indicates an

increase in the real conductivity as the temperature is lowered. Figure 5.9(b)

displays the real conductivity versus frequency for the LCMO film at various

temperatures as determined from the data in Figure 5.9(a). These conductivity

measurements are in the regime ωτ � 1 (ω is the angular frequency and τ is the

carrier collision time) as indicated by the flat frequency response. Figure 5.9(c

and d) show the temperature dependence of σr at 0.7 THz for the LCMO and

LSMO films respectively. The lines are fits to the conductivity using the following

equation:

σ(T ) = σoe
M(T )/Mo (5.1)

where M(T ) ∝ (1 - T/Tc)
β (β � 0.33) is the magnetization and Tc is the transi-

tion temperature. This suggests, in agreement with dc resistivity measurements,

that the conductivity is primarily determined by the magnetization below Tc

[174]. However, this dependence on the magnetization cannot fully describe the

nature of the conductivity in the manganites as indicated in more recent experi-

ments [175, 176]. As shown below, our dynamic measurements also deviate from

Equation (5.1).

Figure 5.10(a) shows the temporal evolution in the normalized peak THz elec-

tric field (plotted as 1 - ∆E where ∆E is the induced change in the transmitted

electric field) transmitted through a LCMO film following optical excitation at
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155



15, 70, 180, and 230 K. Two components characterize the increase in field trans-

mission. The fast ∼2 ps component is resolution limited. However, the data in

Figure 5.10(a) shows this component decreases in magnitude as the temperature

is increased. The data in Figure 5.10(a) also reveal a slow component that in-

creases in relative magnitude as the temperature is increased. As the temperature

is increased the lifetime of the slow component increases.

In Figure 5.10(b and c) the temporal evolution of the optically induced change

in absolute conductivity at various temperatures is plotted for the LCMO and

LSMO films. In each sample the fast component decreases in absolute magnitude

and in relative magnitude to the slow component as the temperature is increased.

The lifetime of the slow component increases with temperature for both films.

The plateau in the conductivity at longer times corresponds to equilibrium be-

tween the electrons, spins, and phonons, albeit at a higher temperature than

before the arrival of the pump. On a ns time scale the film recovers to the initial

temperature as the phonons leave the film via thermal transport to the substrate.

To understand the measured dynamics, we consider a model where the spins

and lattice are coupled subsystems having well defined temperatures Ts and Tp

respectively:

Cp
∂Tp

∂t
= −Gsl(Tp − Ts) (5.2)

Cs
∂Ts

∂t
= +Gsl(Tp − Ts) (5.3)

These differential equations describe the energy transfer between the phonons

and spins. Cp (Cs) is the lattice (spin) specific heat and Gsl is the spin-lattice

coupling constant. The initial optical excitation creates a distribution of excited

electrons with the same spin orientation as in the ground state, since the initial

and final states are coupled via dipole-allowed matrix elements which forbid spin

flip transitions. Furthermore, most mechanisms which flip spins conserve total
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spin. Thus, the initial 2 ps decrease in the conductivity is not related to an ultra-

fast demagnetization, but rather to a change in the phonon temperature as the

excited electrons relax through electron-phonon coupling. Equations (5.2) and

(5.3) describe the dynamics subsequent to this electron-phonon equilibration. On

a longer time scale, spin reorientation occurs due to the combined effects of spin-

orbit coupling and momentum scattering (i.e. a scattering process which breaks

translational invariance is required in addition to spin-orbit coupling [177]). We

attribute the longer time-scale conductivity dynamics to such a process and use

Equations (5.2) and (5.3) to describe this spin-lattice relaxation.

Figure 5.11(a and b) shows the measured lifetimes of the slow component as

a function of temperature for LCMO and LSMO. The solid lines are calculations

from numerically solving Equations (5.2) and (5.3) using fits to the specific heat

data of [178] (LCMO) and [179] (LSMO). The spin-lattice lifetime can be ap-

proximated as τsl = Cs/Gsl where Gsl is the spin-lattice coupling constant. For

these calculations, Gsl was assumed independent of temperature. The agreement

between experiment and theory in Figure 5.11 justifies this assumption yielding

Gsl = 2.5×1015 (5×1015) W/(m3K) for LCMO (LSMO).

The results of this two-temperature model can be extended to understand the

induced change in conductivity (∆σ) as follows:

∆σ(t, Tp, Ts) =
∂σ

∂Tp

∆Tp(t) +
∂σ

∂Ts

∆Ts(t) (5.4)

This equation shows that the temporal evolution of ∆σ depends on changes in

the phonon ∆Tp(t) and spin ∆Ts(t) temperatures. It is important to have a

measure of the relative importance of phonons and spins in determining σ. Such

a measure is given by the quantity

α ≡ ∂σ

∂Ts

/
∂σ

∂Tp

. (5.5)
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It can be shown that α is given by the ratio of the measured slow component

amplitude divided by the fast component amplitude in the limit Cs � Cp. A plot

of α is shown in Figure 5.12(a) for LCMO and LSMO as determined from the

experimental data in Figure 5.10(b and c). For temperatures less than ∼0.5Tc

(0.7Tc) for LCMO (LSMO), α is smaller than one indicating that phonons are

the primary factor limiting hole transport in the eg derived conduction band. In

contrast, above these temperatures α is larger than one and continues to increase

with temperature indicating that spin fluctuations predominantly determine σ.

For LSMO, α < 1 occurs at ∼0.7 whereas for LCMO this occurs at ∼0.5. This

is consistent with other measurements which indicate that polaronic behavior

persists to lower temperatures in LCMO than in LSMO.

The measured α places constraints on the dominant scattering mechanism.

If holes are scattered primarily by thermally disordered ions, α would be small,

as is observed at low temperatures. If they are scattered primarily by the sim-

ple double-exchange mechanism, α would be large, as is observed nearer to Tc.

A more subtle case is a polaron / double-exchange scenario in which small po-

larons form only after the average hopping <t> is reduced due to local spin

misalignment. Although phonons are involved in this scenario, they are phonons

that coherently form a polaron (not thermally disordered phonons), and ∂σ/∂Ts

dominates ∂σ/∂Tp, resulting in a large α.

It is possible to use the experimental data to extrapolate the conductivity

in the Ts−Tp plane by expanding ln(σ(Ts,Tp)) in a power series and performing

a least-squares fit using the data in Figure 5.12(a) and Figure 5.9(c). This has

been accomplished for LCMO by expanding ln(σ) to third order in Ts and Tp.

The results are shown in Figure 5.12(b) as contours of constant ln(σ) in the

Ts−Tp plane. Conventional measurement techniques (e.g. σ vs. T or H) do not
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deviate from equilibrium as indicated by the white diagonal line in Figure 5.12(a).

However, TRTS experiments, while starting from a point on the equilibrium line,

allow for access to the portion of the Tp−Ts plane below the diagonal equilibrium

line since the excited electrons couple preferentially to the phonons during the

initial 2 ps. This optically induced change in the phonon temperature is shown

by the solid black arrow in Figure 5.12(b). The magnitude of this change is

given by ξ/Cp where ξ is the deposited laser energy density. The system then

returns to the equilibrium line as shown by the dashed arrows with the slope

given by Cp/Cs. Depending on the initial temperature, ξ, and Cp,s, the observed

conductivity decrease can depend predominantly on Tp, Ts, or both.

Figure 5.12(b) can be used to understand the dynamics shown in Figure 5.10

(b and c). The dynamics labeled by a 1 in Figure 5.12(b) show a decrease in σ as

the lattice temperature increases followed by a slight recovery in the conductivity

upon approaching the equilibrium line. In this case the change in σ depends

primarily on the phonon temperature. In Figure 5.12(b) this is evident in that

the contours of constant conductivity are nearly perpendicular to the phonon

temperature axis. This is analogous to the data in the first panel of Figure

5.10(c), albeit for LSMO. Our model indicates that a slight cooling of the phonon

distribution as it transfers heat to the spins accounts for the observed conductivity

recovery (i.e. ∂σ/∂T remains negative as expected for the metallic behavior

observed at these temperatures). Arrow 2 in Figure 5.12(b) again corresponds

to a decrease in σ during the initial electron-phonon equilibration, followed by

a further decrease in the conductivity as the spin temperature equilibrates with

the lattice temperature. This two-component behavior is observed in LCMO at

low temperatures (see Figure 5.10(b) panel 1) and indeed throughout most of the

temperature range for LCMO and LSMO up to higher initial temperatures where,

as arrow 3 in Figure 5.12(b) shows, the initial change in phonon temperature does
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not result in a large change in σ: the decrease is due mostly to spin fluctuations.

This is evident in that the contours of constant conductivity are now nearly

perpendicular to the spin temperature axis. This is observed at higher initial

temperatures in both LCMO and LSMO (see the bottom panels of Figure 5.10(b

and c)).

In conclusion, we have measured the ultrafast conductivity dynamics in LCMO

and LSMO thin films showing that ∂σ/∂T is determined primarily by thermally

disordered phonons at low temperatures and by spin fluctuations at higher tem-

peratures.
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CHAPTER 6

Conclusions

The first measurements of the JPR in a high-Tc superconducting material in

transmission have been demonstrated in Tl-2212 superconducting thin films us-

ing terahertz time-domain spectroscopy. Using this technique in zero field, the

onset of the interlayer phase coherence is probed as close as ∼4 K below Tc. In

addition, the c-axis quasiparticle conductivity was determined from the linewidth

of the JPR’s as a function of temperature, and I found indications of the super-

conducting order parameter to have d-wave symmetry in the dirty limit. Using

the JPR as a tool to study the vortex structure, I found direct evidence for a

linelike liquid phase in Tl-2212. The ordering of the vortex lattice probed by

the JPR when driving it with a current in the ab-plane was studied at various

temperatures. It was found that at higher temperatures, when driving the vor-

tex lattice into the flux flow state, there is a threshold current above which the

ordering improves with increasing current.

The JPR of high-Tc superconductors with extreme anisotropy such as the

bismuth, thallium and mercury based high-Tc superconductors lies in the far-

infrared and is thus amenable to study using THz-TDS. The advantage of using

THz-TDS in transmission to measure the JPR, in comparison to the grazing angle

reflectivity technique is an improved SNR which allows measurements close to Tc.

Furthermore, the magnetic field dependence changes correctly with temperature,

in contrast to the grazing angle reflectivity technique, where no change in the
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field dependence was observed with temperature [135].

In this dissertation it was established that the vortex lattice in Tl-2212 melts

into a linelike liquid phase for low magnetic fields (B < 2.5 kG). However, the

structure of the vortex liquid phase at higher magnetic fields is still undeter-

mined. Future JPR experiments at higher magnetic fields would aim to answer

the questions of whether the vortex lattice melts directly into a disintegrated

liquid of pancake vortices or if it is further subdivided into two liquid phases.

Namely, a liquid of vortex lines immediately above the melting transition, and a

disintegrated liquid of pancake vortices at higher temperatures.

In addition, the technique of THz-probe spectroscopy was shown to be a use-

ful tool to study correlated electron materials such as Y-123 and La0.7Ca0.3MnO3.

In the case of the superconductors, phase coherent pair recovery occurs on a pi-

cosecond timescale following optical excitation. For the manganite films, it was

found that ∂σ/∂T is determined primarily by thermally disordered phonons at

low temperatures (T � Tc) and by spin fluctuations closer to Tc. It is expected

that this technique will find application in a wide variety of other strongly cor-

related electron materials.
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APPENDIX A

Derivation of Transmission Coefficients

A.1 Thin Film on Thick Substrate

At normal incidence the complex transmission coefficient T (ω) for a thin film on

a thick substrate is given by Equation (2.31),

T (ω) =
T12T23

T13
· exp

[
iωd

c
(ñ2 − 1)

]
1 + R12R23 · exp

[
2iωd

c
ñ2

] · exp

[
i
ω∆L

c
(ñ3 − 1)

]
, (A.1)

where

T12 =
2

ñ2 + 1
, T23 =

2ñ2

ñ3 + ñ2

, T13 =
2

ñ3 + 1
, (A.2)

and

R12 =
ñ2 − 1

ñ2 + 1
, R23 =

ñ3 − ñ2

ñ3 + ñ2

. (A.3)

Assuming ω
c
dñ2 � 1 and ñ2 � ñ3 > 1 Equation (A.1) can be reduced as follows

(omitting the phase mismatch factor)

T (ω) =

2ñ2(ñ3+1)
(ñ2+1)(ñ3+ñ2)

· exp
[
iωd

c
(ñ2 − 1)

]
1 + (ñ2−1)(ñ3−ñ2)

(ñ2+1)(ñ3+ñ2)
· exp

[
2iωd

c
ñ2

]
� 2ñ2(ñ3 + 1)(1 + iω

c
dñ2)

ñ2ñ3 + ñ2
2 + ñ3 + ñ2 + (ñ2ñ3 − ñ2

2 − ñ3 + ñ2)(1 + 2iω
c
dñ2)

� ñ3 + 1

ñ3 + 1 + (ñ2ñ3 + ñ2
2 − ñ3 + ñ2)i

ω
c
d

� ñ3 + 1

ñ3 + 1− iω
c
dñ2

2

. (A.4)
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The refractive index of the superconducting film is given by

ñ2 =

√
1 + i

σ̃

εoω
, (A.5)

and the impedance of free space is given by

Zo =

√
µ0

εo
=

1

cεo
. (A.6)

The reduced expression for T (ω) (including the phase mismatch factor) can then

be written as

T (ω) =
Esig(ω)

Eref(ω)
=

ñ3 + 1

ñ3 + 1 + Zoσ̃(ω)
ω
c
d
· exp

[
i
ω∆L

c
(ñ3 − 1)

]
. (A.7)

A.1.1 Induced Conductivity as a function of Induced Field

The induced change in conductivity as a function of induced change in electric

field for a thin film on a thick substrate is obtained from Equation (A.7).

dT

dσ
=

−(1 + ñ3)e
iω∆L

c
(ñ3−1)Zod

(1 + ñ3 + Zoσd)2
=

∆T

∆σ
(A.8)

⇒ ∆T = −T
Zod∆σ

(1 + ñ3 + Zoσd)
(A.9)

⇒ ∆σ = −∆T

T

1

T

(1 + ñ3)e
iω∆L

c
(ñ3−1)

Zod
(A.10)

= −∆E

Esig

Eref
Esig

(1 + ñ3)e
iω∆L

c
(ñ3−1)

Zod
. (A.11)

A.2 Optical Properties of Uniaxial Anisotropic Media

An electromagnetic wave incident at an angle, θi upon an anisotropic media

(uniaxial crystal) will excite a wave inside the material, E=E0ei(k·r−ωt) where

each component of E and k can be complex. This is illustrated in Figure A.1

where the x-axis lies at the intersection of the plane of incidence and the z-axis
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Figure A.1: Electromagnetic wave propagating in a uniaxial crystal.

is normal to the surface. The dielectric function in the anisotropic medium is a

tensor

ε̂ =




ε⊥ 0 0

0 ε⊥ 0

0 0 ε‖


 ,

and when solving Maxwell’s equations [47] for the dispersion relation

k(k ·E)− k2E+ k2
0 ε̂E = 0 (A.12)

⇒ [
k2 − k2

0ε⊥
]︸ ︷︷ ︸

ordinary

[
ε⊥k2

⊥ + ε‖k2
‖ − ε⊥ε‖k2

0

]︸ ︷︷ ︸
extraordinary

= 0, (A.13)

where

k = k0n, k2
0 =

ω2

c2
, k‖ = kz, k2

⊥ = k2
x + k2

y (A.14)
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we get two modes for the propagation of electromagnetic waves with a different

value for the complex refractive index

1

n
=

1

ε⊥
, (A.15)

n2
z

ε⊥
+

n2
x + n2

y

ε‖
= 1. (A.16)

The complex refractive index for the ordinary and extraordinary waves are then

given by

1

no(θo)
=

1

n⊥
, (A.17)

1

n2
e(θe)

=
cos2(θe)

n2
⊥

+
sin2(θe)

n2
‖

, (A.18)

respectively. If the incident wave is p-polarized the excited wave will propagate

along the extraordinary axis at the angle, θe, and along the ordinary axis at the

angle, θo when s-polarized [32].

To further understand the propagation of electromagnetic waves through a

uniaxial anisotropic media we consider the x-component and z-component of the

wave vectors. For the ordinary wave, sin θi = n⊥ sin θo. Therefore,

kx = k sin θo =
ω

c
sin θi, (A.19)

and

k2
z = k2 cos2 θo =

ω2

c2
εab

(
1− sin2 θi

εab

)
, (A.20)

where εab = ε⊥ for the ab-plane (in-plane), and εc = ε‖ for the c-axis (out-of-plane)

dielectric functions given by

εab(ω) = εab∞

(
1− ω2

pab

ω2

)
, εc(ω) = εc∞

(
1− ω2

pc

ω2
+

4πiσc

εc∞ω

)
. (A.21)
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Here ωpab and ωpc are the in-plane and out-of-plane plasma frequencies, respec-

tively. The x-axis wave vector depends only on the incident radiation, while the

z-axis wave vector depends on the in-plane dielectric function. When substitut-

ing we find that the ordinary wave can only propagate above the in-plane plasma

edge, ω > ωpab.

For the extraordinary wave, sin θi = ne sin θe = nx. Therefore,

kx = k sin θe =
ω

c
sin θi. (A.22)

From Equation (A.16), nx = sin θi, and ny = 0 we find

k2
z =

ω2

c2
εab

(
1− sin2 θi

εc

)
. (A.23)

Thus, for the extraordinary wave, the z-axis wave vector depends on both the

in-plane and out-of-plane dielectric functions. Assuming ω � ωpab, and not

taking into account dissipation and c-axis dispersion effects [101, 120], we find

that the extraordinary wave can only propagate in a narrow window above the

out-of-plane plasma edge,

ωpc < ω <
ωpc√

1− sin2 θ
εc∞

≈ ωpc

(
1 +

sin2 θ

2εc∞

)
. (A.24)

A.2.1 Reflection and Transmission Coefficients at an Interface

The transmission and reflection coefficients for the ordinary wave at an interface

between an anisotropic medium and an isotropic medium are given by the well

known s-polarized Fresnel Equations (2.9) and (2.11), respectively.

The incident, reflected and transmitted waves for the extraordinary wave are

given by

Ei = E(i)exp
[
i(k(i) · r− ωt)

]
(A.25)
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Hi = n1

(
k̂

(i) ×Ei

)
, (A.26)

Er = E(r)exp
[
i(k(r) · r− ωt)

]
(A.27)

Hr = n1

(
k̂

(t) ×Er

)
, (A.28)

Et = E(t)exp
[
i(k(t) · r− ωt)

]
(A.29)

Ht =

(
n2
⊥

nz

)
cos θ′t

(
v̂(t) × Et

)
, (A.30)

respectively. Here v̂ is the complex ray vector, and θ′t is the angle between the

ray vector and the optical axis defined as the z-axis,

tan θt =
n⊥
n‖

(A.31)

⇒ tan θ′t =
ε⊥
ε‖

· tan θt =
ε⊥
ε‖

n⊥
n‖

. (A.32)

E(t) is perpendicular to the ray vector, and lies in the principal plane defined

by the z-axis and the x-axis. See Figure A.2. The boundary conditions require

z
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E  =|Ex|
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v

α

α

(a) (b)

Figure A.2: (a and b) Illustration of the directions of the wave normal and the field
vectors of an electromagnetic wave propagating in a uniaxial crystal.

the tangential components of E and H to be continuous at the interface plane.
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Therefore,

E
(i)
‖ cos θi − E

(r)
‖ cos θi = E

(t)
‖ cos θ′t, (A.33)

n1E
(i)
‖ + n1E

(r)
‖ =

(
n2
⊥

nz

)
cos θ′tE

(t)
‖ . (A.34)

Solving Equation (A.33) and (A.34) for E
(t)
‖ and E

(r)
‖ in terms of E

(i)
‖ yields

E
(t)
‖ =

n2
⊥ cos θi − n1nz

(n2
⊥ cos θi + n1nz) cos θ′t

E
(i)
‖ , (A.35)

E
(r)
‖ =

n2
⊥ cos θi − n1nz

n2
⊥ cos θi + n1nz

E
(i)
‖ . (A.36)

nz is found from Equation (A.16)

nz =
n⊥
n‖

(
n2
‖ − n2

1 sin
2 θi

) 1
2 , (A.37)

where nx = n1 sin θi, and ny = 0. Thus, in going from an isotropic medium 1 to

an anisotropic medium 2 the transmission coefficient is given by

T12 =

2n1 cos θ1

√
n2

1

n2
c
sin2 θ1

(
n2

ab

n2
c
− 1

)
+ 1

nab cos θ1 + n1

√
1− n2

1

n2
c
sin2 θ1

, (A.38)

and the reflection coefficient is given by

R12 =
nab cos θ1 − n1

√
1− n2

1

n2
c
sin2 θ1

nab cos θ1 + n1

√
1 +

n2
1

n2
c
sin2 θ1

. (A.39)

In going from an anisotropic medium 2 to an isotropic medium 3 the transmission

coefficient is given by

T23 =
2nab

√
1− n2

1

n2
c
sin2 θ1√

1 +
n2

1

n2
c
sin2 θ1

(
n2

ab

n2
c
− 1

)[
nab cos θ3 + n3

√
1− n2

1

n2
c
sin2 θ1

] , (A.40)

and the reflection coefficient is given by

R23 =
n3

√
1 +

n2
1

n2
c
sin2 θ1 − nab cos θ3

n3

√
1 +

n2
1

n2
c
sin2 θ1 + nab cos θ3

. (A.41)
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In case of an anisotropic crystal, n3 = n1 and θ3 = θ1, where medium 1 is air,

medium 2 is the crystal, and medium 3 is air. In case of an anisotropic thin film

on a thick substrate, medium 1 is air, medium 2 is the thin film, medium 3 is the

thick substrate, and medium 4 is air. Then n4 = n1 and θ3 is given by

cos θ3 =

√
1− n2

1

n2
3

sin2 θ1. (A.42)

The propagation coefficient in the anisotropic medium 2 over a distance d is

given by

P2 = exp

[
i
ωd

c
ñ2 cos θ2

]
. (A.43)

Here n2 and θ2 are the refractive index and angle of the extraordinary wave,

respectively, nz = ne cos θe = n2 cos θ2. Using Equation (A.37) for nz

n2 cos θ2 = nab

√
1− n2

1

n2
c

sin2 θ1. (A.44)

Thus,

P2 = exp

[
i
ωd

c
ñab

√
1− ñ2

1

ñ2
c

sin2 θ1

]
. (A.45)
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[6] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao,
J. Huang, Y, Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 109 (1987)

[7] Z. X. Zhao, L. Q. Chen, Y. H. Huang, G. H. Chen, R. M. Tang, G. R. Liu,
C. G. Cui, L. Chen, L. H. Wang, S. Q. Guo, S. L. Li, and J. Q. Bi, Kexue
Tongbao 32, 661 (1987)

[8] H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, Jpn. J. Appl. Phys.
27, L209 (1988)

[9] Z. Z. Sheng and A. M. Hermann, Nature 232, 55 (1988)

[10] L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez,
C. W. Chu, J. H. Eggert, and H. K. Mao, Phys. Rev. B 50, 4260 (1994)

[11] B. A. Baumert, J. Supercond. 8, 175 (1995)

173



[12] A. Shengelaya, K. A. Müller, S. Reich, and Y. Tsabba, Eur. Phys. J. B
12, 13 (1999)

[13] J. Akimitsu, Symposium on Transition Metal Oxides, Sendai, Jan 10
(2001); J. Nagamatsu, N. Nakagawa, T. Murakana, Y. Zenitani, and
J. Akimutsu, Nature 410, 63 (2001)

[14] C. H. Rosner, IEEE Trans. on Appl. Supercond. 11, 39 (2001)

[15] T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999)

[16] L. F. Cohen and H. J. Jensen, Rep. Prog. Phys. 60, 1581 (1997)

[17] Y. Yeshurun, A. P. Malozemoff, and A. Shaulov, Rev. Mod. Phys. 68,
911 (1996)

[18] K. Kadowaki, Y. Songliu, and Koichi Kitazawa, Supercond. Sci. Technol.
7, 519 (1994)

[19] A. A. Tsvetkov, D. van der Marel, D. Dulic, H. J. Molegraaf,
N. N. Kolesnikov, B. Willemsen, and Z. F. Ren, Proc SPIE Int Soc Opt
Eng, edited by I. Bozovic, D. Pavuna 3480, p. 2−10 (Bellingham, WA,
USA: SPIE 1998)

[20] V. K. Thorsmølle, R. D. Averitt, M. P. Maley, L. N. Bulaevskii, C. Helm,
and A. J. Taylor, Opt. Lett. 26, 1292 (2001)

[21] T. Xiang and J. M. Wheatley, Phys. Rev. Lett. 77, 4632 (1996)

[22] M. B. Gaifullin, Y. Matsuda, N. Chikumoto, J. Shimoyama, and
K. Kishio, Phys. Rev. Lett. 84, 2945 (2000)

[23] L. Duvillaret, F. Garet, and J.-L. Coutaz, IEEE J. of Sel. Topics in
Quantum Electr. 2, 739 (1996)

[24] M. C. Nuss and J. Orenstein, Terahertz Spectroscopy in Millimeter and
Submillimeter Wave Spectroscopy of Solids, G. Grüner, ed., Topics in
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(1996)

[151] S. Ryu, M. Hellerquist, S. Doniach, A. Kapitulnik, and D. Stroud, Phys.
Rev. Lett. 77, 5114 (1996)

[152] S. Bhattacharya and M. J. Higgins, Phys. Rev. Lett. 70, 2617 (1993)

[153] U. Yaron, P. L. Gammel, D. A. Huse, R. N. Kleiman, C. S. Oglesby,
E. Bucher, B. Batlogg, D. J. Bishop, K. Mortensen, K. Clausen,
C. A. Bolle, and F. De La Cruz, Phys. Rev. Lett. 73, 2748 (1994)

[154] M. Marchevsky, L. A. Gurevich, P. H. Kes, and J. Aarts, Phys. Rev.
Lett. 75, 2400 (1995)
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