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Abstract

Scattering-type scanning near-field optical microscop$N&©M) is a versatile optical
imaging technique which circumvents the diffraction barby detecting the light scattered
from a sharp probing tip oscillating above the specimereserf Significant improvements
in the theoretical modeling, signal detection and appllgglof the s-SNOM are presented
in this thesis.

For the first time it is demonstrated that the s-SNOM opega#ihinfrared frequencies
can be employed for the nanoscale mapping of crystallimtpalar materials. To this

end, the crystal lattice degradation caused by ion beamaimtgtion in a SiC crystal is

investigated by near-field infrared spectroscopy in thel peh wavelength range. It is
found that the strength of the phonon-polariton resonaat-field interaction between the
s-SNOM probe and the sample rapidly diminishes with the mcdation of defects in the

crystal lattice. The near-field optical contrast betweendtystalline and amorphous SiC
exceeds 30dB, making the near-field resonance strengthyasgasitive measure of the
crystal lattice quality. S-SNOM images of SiC crystal soés patterned by focused ion
beam (FIB) implantation reveal a spatial optical resolutietter than 50 nmA(/200).

It is additionally shown that IR s-SNOM is sensitive to thackting sequence of atomic
layers in a crystal (polytypism). Longitudinal optical ptom frequencies in SiC polytypes
are separated by only 2-3 cth resulting in very fine near-field optical contrasts. A proof
is presented here that the commonly employed non-interfeiac and homodyne inter-
ferometric s-SNOM signal detection methods do not yieldadpcible results with weak
contrasts like those observed with SiC polytypes. The me&sosuch behavior is found
in the interference between the near-field and backgrouatiesimg. To overcome this
problem and obtain accurate and reproducible near-fielckispeven with weak structural
contrasts, a new "pseudo-heterodyne” interferometridwokfor s-SNOM signal detection
has been developed. The pseudo-heterodyne technique éiveidackground interference
by applying a sinusoidal phase modulation to the interfetemreference wave. It also of-
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fers the advantage of a simple experimental implementatohapplicability in the entire
wavelength range from near-UV to far-IR.

Unambiguous material identification from the s-SNOM spetias been up to now hin-

dered by quantitative discrepancies between the calcukte the measured near-field
contrasts. To resolve this problem, a "monopole” model ef phobe-sample near-field
interaction is introduced in this work. It is derived by repenting the s-SNOM probe
as a prolate spheroid and subsequently reducing it to pbarges which give the domi-

nant contribution to the near-field interaction. The new pigmovides an unprecedented
guantitative agreement with the experimentally obsernearfield contrasts. Moreover,
the final closed-form analytical solution is simple enouglibé used in the inverse way to
determine the complex dielectric function of the samplenfithe demodulated near-field
signal at each pixel in an image.

The monopole model combined with the pseudo-heterodynefiebad spectroscopy has
the potential to transform the infrared s-SNOM into a powkahalytical tool for nonin-
vasive optical probing of the local chemical composition atructural properties on the
nanometer scale.



Zusammenfassung

Die optische Streulicht-Nahfeldmikroskopie (scattefipge near-field optical microsco-
py, s-SNOM) ist eine vielseitige optische Mikroskopieneath, bei der das Beugungsli-
mit durch die Detektion des Streulichts einer Uber der Rioberflache gerasterten Sonde
Uberwunden wird. Im Rahmen dieser Arbeit wird eine deudi®rbesserung der theore-
tischen Beschreibung, der Signaldetektion, sowie der Awlvarkeit dieses Mikroskopie-
verfahrens vorgestellt.

Es wird erstmals demonstriert, dass Streulicht-Nahfetdoskopie mit Infrarotbeleuch-
tung (IR s-SNOM) dazu benutzt werden kann, die Kristafiniton polaren Materialien
auf der Nanometerskala abzubilden. Dazu wird die Schadigien Kristallstruktur eines
ionenimplantierten Siliziumkarbid Kristalls (SiC) durdtahfeldspektroskopie im infra-
roten WellenlangenbereiciA (= 9-11 um) untersucht. Die Starke der phonon-resonanten
Nahfeldwechselwirkung zwischen der Nahfeldsonde und dalod®nimmt dabei mit zu-

nehmender Defektdichte im Kristallgitter rasch ab. Derfeltoptische Kontrast zwischen
kristallinem und amorphen SiC betragt mehr als 30 dB, wésthial Starke der Nahfeldre-
sonanz ein extrem empfindliches Mass fir die Kristallgaadiarstellt. Anhand der nahfel-
doptischen Bilder der mit fokussierten lonenstrahlen jRBukturierten SiC Oberflachen
kann eine laterale optische Aufldsung von unter 50 Af200) nachgewiesen werden.

Weiterhin wird gezeigt, dass das IR s-SNOM auch auf die $talge von Atomlagen in ei-
nem polaren Kristall (Polytypismus) sensitiv ist. Die |anginalen optischen Phononfre-
quenzen von SiC Polytypen unterscheiden sich um ledigli8lei2 1, was zu einem sehr
geringen Nahfeldkontrast fuhrt. Anhand dieses Kontrastd gezeigt, dass die weithin
verbreitete nicht-interferometrische oder homodyn+fiet®@metrische Strreulichtdetektion
keine reproduzierbaren Resultate von schwachen Kontrastgbt. Der Grund hierflr ist
die Interferenz von Nahfeld- und Hintergrund-Streulidbteses Problem wird durch ei-
ne ,pseudo-heterodyne” interferometrische Detektiortbowe Giberwunden. Das in dieser
Arbeit neu entwickelte Detektionsverfahren liefert eratenprazise und reproduzierbare
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Nahfeldspektren von SiC Polytypen. Die pseudo-heterodigehnik vermeidet stéren-
de Interferenzen durch eine sinusformige Phasenmoduld@se Referenzstrahls. Weitere
Vorteile sind die einfache experimentelle Implementigrusowie die Anwendbarkeit im
kompletten Spektralbereich zwischen UV und Ferninfrarot.

Bisher war eine eindeutige Materialidentifizierung mit defSNOM durch quantitative
Unterschiede zwischen den theoretischen und experinkemtilahfeldspektren oftmals
nicht moglich. Um dieses Problem zu l6sen, wird in der vgeieden Arbeit ein neu-
es Modell fur die Nahfeldwechselwirkung zwischen Nahfeltde und Probe eingefuhrt.
Bei der Herleitung des sogenannten ,Monopol“-Modells wdre Nahfeldsonde zunachst
durch ein Spheroid ersetzt. Die elektrischen Felder am Agp&sen sich ndherungsweise
durch eine Punktladung beschreiben, mit deren Hilfe eiradytinche Naherung der nah-
feldoptischen Wechselwirkung mit der Probenoberflacherg#n wird. Die Ergebnisse
des Modells zeigen eine hervorragende quantitative Ubstiigimung mit experimentellen
Nahfeldkontrasten. Aufgrund der geschlossenen anahgrst.6sung konnte das Modell
in Zukunft angewendet werden, um aus den experimentelldrigdisignalen an jedem
Bildpunkt die komplexe dielektrische Funktion der Probéezvechnen.

Die Streulicht-Nahfeldmikroskopie stellt bereit jetzheiielversprechendes Verfahren zur
optischen Nanoanalytik dar. Sie bietet einmalige Mdgleatén zur zerstérungsfreien Cha-
rakterisierung sowohl der lokalen chemischen Zusammemsgtals auch von lokalen

strukturellen Materialeigenschaften. Die experimeetelind theoretischen Entwicklun-
gen der vorliegenden Arbeit sollten in Zukunft zu weiteraszinierenden Anwendungen
fuhren, etwa zur zerstérungsfreien Charakterisierungskaliger Spannungsfelder oder
zur Analyse der Nanokompositen mit einer Auflésung in nmekzr.



1 Introduction

We are surrounded by a large variety of natural and artifaligdcts displaying interesting
structural properties on the nanometer scale, i.e. thelesugale extending from about one
to hundred nanometers. Examples range from structuredialatsuch as nanocompos-
ites and quantum dots, over electronic components likesigstors and memory cells, to
biological objects including single molecules, proteimgaexes, viruses, etc. The struc-
ture of these objects cannot be directly observed by commeadtoptical microscopes due
to the inherent resolution barrier imposed by the wave4i&&ure of light. In particular,
the diffraction of light waves limits the smallest distarween two resolvable points to
about half the wavelength. Consequently, even the bestadptiicroscopes cannot resolve
features smaller than about 200 nm.

The demand for the spatial resolution significantly bettent200 nm has led to the devel-
opment of numerous alternative imaging techniques exptpa wide variety of contrast
mechanisms and in some cases surpassing even the atonhitioesAn overview of the
most widespread high-resolution imaging methods is ptesest the beginning of Chap-
ter 2. The apertureless or scattering-type scanning neldrefptical microscopy (s-SNOM)
employed in this work is a nondestructive optical imagirghteque which circumvents the
diffraction barrier with the aid of a sharp probing tip pldda the immediate proximity of
the specimen surface. The tip is illuminating by a focuseérdeam and the light scat-
tered by the tip is collected and recorded. The amplitudepdnade of the scattered light
depend on the near-field interaction between the probe andaimple, thereby enabling
an optical map of the sample to be constructed by scanning-8OM probe along the
specimen surface. The highest attainable resolution esmiéted only by the sharpness of
the probing tip and is thus independent of the light wavelengd more detailed descrip-
tion of this technique is provided in Chapter 2, including tipical experimental setup and
a simple theoretical model which qualitatively explaine #ignal and contrast generation
in s-SNOM.
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In addition to high-resolution optical microscopy, s-SNQ@&h also be applied for spec-
troscopy if the sample is repeatedly scanned while secalbnthanging the illumination
wavelength. This is of particular advantage in the infrafi®) wavelength range where
the vibrational spectral fingerprints enable chemical fifieation of compounds present
in the sample. The conventional far-field IR spectroscogyehy suffers from the poor
resolution, on the order of several micrometers. The coatlan of s-SNOM and IR spec-
troscopy therefore provides the means to obtain both higimatal sensitivity and high
spatial resolution. Furthermore, particularly sharp anoing resonances were discovered
in the s-SNOM spectra of samples supporting quasi-pastlka@wn as surface polaritons.
The physics behind surface polaritons and an overview af pheperties and applications
is given in Chapter 3.

By comparing the measured near-field spectra of polariésoemant materials with predic-
tions of the simple point dipole model presented in Chaptarquantitative disagreement
between the experiment and the model is found regardingthethresonance position and
its strength. This discrepancy has been identified as tinegpyi factor limiting the mate-
rial identification capabilities of the IR s-SNOM. Chaptas3or this reason devoted to the
derivation of a new and improved model capable of s-SNOMadigrediction on a quanti-
tative level. The new "monopole” model, first derived as & péthis thesis, departs from
the commonly employed reduction of the s-SNOM probing ti@tpoint dipole and in-
stead represents it by a prolate spheroid in uniform etefiédd. It is further demonstrated
that only a small part of this spheroid interacts with the glemnand that the interacting
part can be approximated by a point charge (monopole). Alytcel expression for the
charge induced by the near-field interaction between thd@MN probe and the sample is
finally derived. Comparisons to the experiment demonsthatethe monopole model rep-
resents a major improvement over the dipole model and sdsaéeguantitative prediction
of near-field material contrasts measured by s-SNOM.

Technically, the measurement of pure near-field contrasgsINOM is known to be com-
plicated by the large background scattering generatededyibinating s-SNOM probe. The
monopole model derived in Chapter5 is extended in Chapterd&tount for the back-
ground scattering. On this basis, the twofold backgroufidence on the s-SNOM signal
is revealed and quantified. One part of the background infliésm additive with respect
to the near-field signal, and is routinely suppressed by tdwedard higher-harmonic de-
modulation method. The other part of the background camtiob is multiplicative with
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respect to the near-field signal and a proof that it needs &biiménated for a reliable near-
field spectroscopy of surface-polariton resonant samplpsaisented here. For a complete
multiplicative background elimination, a new interferanmedetection method has been
proposed and implemented in this thesis. Comparison of tBRGM signal detection
techniques demonstrates the advantages of the new "p$ateimdyne” over the other
methods either in terms of background suppression powertbeiease of implementation
and available spectral range.

Building on the improvements in s-SNOM signal modeling amdedtion presented in

Chapters 5 and 6, the applicability of sS-SNOM is extended&rheasurement of struc-
tural contrasts in materials of the same chemical compwsiti Chap 7. In particular, the

way to measure crystal quality degradation due to ion intatéon or radiation damage is
presented. It is shown that even minute variations in chg$tacture such as those aris-
ing from the different stacking order of layers in a crysgablitypism) can be detected
in s-SNOM and reproduced by the monopole model. It is finaliggested that with the

aid of the monopole model the nanometer-scale chemical tanctgral composition of a

sample on the might be recovered even with no prior inforomatin the possible sample
composition.
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2 Scattering-type Near-field
Optical Microscopy

2.1 Introduction

Lightis our primary source of information about the enviment which surrounds us. This
is true not only for accomplishing everyday tasks, but atshe domain of scientific image

acquisition because optical imaging methods are simpleaable, fast and inexpensive
and also contactless and noninvasive. Despite all thesantatyes, alternative imaging
techniques had to be developed because of the fundamenitabti how small details can

be resolved using optical methods. The optical resolutamiér is a consequence of the
wave-like nature of electromagnetic (EM) radiation whisHar this reason susceptible to
diffraction. Due to diffraction, the image of a point sourddight produced by an optical

microscope is not a point but rather a set of concentric bagh dark rings known as Airy

pattern or Airy disk (Fig. 2.1).

X/ AM 1

Figure 2.1: Airy pattern: Intensity distribution in the igmplane of a point source viewed
by an optical microscope with a numerical apertbige= 1 and magnification
M.

Two closely separated point sources are usually considastdesolved when the cen-
tral maximum of the first source’s Airy pattern coincideshwiie first zero of the second
source’s Airy pattern, as shown in Fig.2.2(b). This craeriknown as the Rayleigh cri-
terion [1], was used by Ernst Abbe[2] to established theofwlhg quantitative relation
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between the smallest distan&&ni, between two point source resolvable by an optical
microscope and the operating light wavelength

A
DNXnin = O.Glm , (2.1)
wheref represents the half angle subtended by the cone of lightieagpby the microscope
objective, anadhis the refractive index of the medium between the samplelandhjective.
The produch sinf thereby defines the numerical aperture of the objectiveytéeiadNa.

2 B 2
y/AM 1 y/AM 1 y/AM 1 1
0 ' 0 0
-1 { -1 ‘ -1

-2 -2
-2 -2

-1 -1

0 0

x/am L > x/am L > x/amt >

@) (b) ()

Figure 2.2: Image of two point-like sources of light obtalrey an optical microscope with
Na = 1 and magnificatioM: (a) separated bfx = 1.2A and easily resolved,
(b) separated bjx = 0.6A and just resolved according to the Rayleigh crite-
rion, and (c) separated iy = 0.3A and not resolved.

It should be noted that the factor of 0.61 in Eq. 2.1 is a dicecisequence of the Rayleigh
criterion and other criteria might yield different resultor example, according to the
Sparrow criterion [3], two point sources are resolved if ddta exists along the line con-
necting the central maxima in their respective images, hadgmallest resolvable distance
equalsAx = 0.47A /nfor 8 = 90. Even with the Rayleigh criterion, the resolution can be
pushed to about the same value using oil immersion objectorewhichn ~ 1.3. Hence

it is customary to say that the resolution of optical micayses is limited to about half the
wavelength. Since the point spread function of the micrpseds known, it might seem
natural to attempt the deconvolution of a recorded imagedsy-processing it. However,
this turns out to be an ill-posed inverse problem becausefgigntly different distributions
of sources can produce very similar intensity distribusionthe images|[4, 5].

Since there are numerous natural and artificial objects awu#rall sizes or substructures
on the order of 100 nm and less, in many cases the resoluti@amable with visible light
(A =400.800nm) is not sufficient. Although ultraviolet (UV) light @ven X-rays could
be theoretically used to obtain much better resolutiorretiaee several practical obstacles
preventing this. Depending on the actual wavelength, itiffcdlt or even impossible
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to fabricate lenses which are transparent to such light dswl facus it with sufficient
precision. Furthermore, the investigated samples magsiuim rapid degradation due to
the ionization damage.

To circumvent these problems, alternative techniques bega developed. The most use-
ful technique for obtaining high-resolution structure ofstalline material is based on the
diffraction of X-rays. It provides atomically resolved nsagf the electron density in crys-
tals with a wide range of unit cell sizes. The unit cells magréiby contain between several
atoms in simple inorganic crystals to over*dtoms in large biological macromolecules.
Even larger structures of up to 8@toms can be studied by X-ray crystallography albeit
the resolution is limited to about®nm in that case[6]. Limitations of the crystallography
approach follow from the fact that many substances do ndiilseerystallize in their nat-
ural state and also that dynamic studies cannot be perfowiteanatter in its crystallized
state.

Whereas the crystallography only works with a huge numbeédeitical units, it is pos-
sible to resolve single nanometer-sized objects by usiagtreins instead of photons for
probing the sample[7, 8]. Unlike photons, electrons aregddhparticles and can be fo-
cused by magnetic lenses which are hollow and do not posextepndor the transmission
of particles. The de Broglie wavelength=h/p of electrons is smaller than 0.1 nm already
for electrons with kinetic energies on the order of 1 keV,ls the attainable resolution is
mostly limited by imperfections of magnetic lenses. Highs&ation Transmission Elec-
tron Microscopy (HRTEM) can even achieve a true sub-atomsolution in crystalline
material by exploiting phase contrasts of electron wavesngxthe sample. Although
nowadays an indispensable tool for structural analysifénmaterials and life sciences,
transmission electron microscopy has to be used in highuwaatonditions and at low
temperatures, making it unsuitable for monitoring natyratcurring dynamic processes.
TEM is also notorious for the highly demanding sample pragian. Although the latter
obstacle is avoided in Scanning Electron Microscopy (SEM1[L]), this comes at the ex-
pense of an order of magnitude lower resolution. In the caé®th TEM and SEM, the
exposure time is limited to relatively short periods beeaofthe deteriorating influence
of the electron beam on the sample.

Owing to the recent progress in fluorescence imaging, a cetelglnon-invasive and non-
destructive high-resolution imaging can be performed lrglywoptical means. There are
two techniques that need to be mentioned in this context. érleem is known as the
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STimulated Emission Depletion (STED, [12, 13]) microscopy uses two diffraction-
limited pulses for illuminating the sample, the first of thersing a Gaussian-shaped fluo-
rescence excitation pulse. The excitation pulse is imnmelgiollowed by a second, ring-
shaped (toroidal) depletion pulse tuned to an emissiorolitiee fluorescent dye. After the
second pulse depletes the excited energy levels of dye mlekeby means of stimulated
emission, the fluorophores remain in an excited states ontlga center of the depletion
pulse. The exact non-depleted spot size depends on theemgtielof light and the inten-
sity of the depletion pulse compared to the intensity neéoleshturating the depletion[14],
and may be as small as 20-30 nm in diameter. By scanning tbiglsough the sample, a
fluorescence map of the sample is obtained with the respestibwavelength resolution.
The same effect can also be achieved by another method, kaswime PhotoActivated
Localization Microscopy (PALM, [15]). It relies on the ploatctivation of only a small
fraction of total fluorophore population at a time, such #eth activated dye molecule is
separated from all other activated dye molecules by at teeestar-field resolvable distance
Axmin. The location of each active (fluorescing) dye moleculeéntprecisely determined
by fitting the center position of its image to the theoretaiht spread function (Airy pat-
tern). After all activated fluorophores have been irreddydbleached, the next generation
of dye molecules is activated and the procedure is repeatddhe complete fluorescence
map of the sample has been obtained. The resolution whiclbeachieved this way
is generally better than 25 nm, and theoretical consideratindicate it can be improved
down to a few nanometers.

If the density of fluorophores is so low that they can all beclly resolved, their localiza-
tion with extremely high precision may be performed everhaiit resorting to photoac-
tivable dyes [16, 17]. For highest localization and longestking times of fluorescent
molecules, it is necessary to increase the number of phob@ysemit before bleaching
to the largest values possible [18]. By depleting oxygenetules from the sample, it
is possible to register up to $@hotons instead of the usual®:0 10* photons per dye
molecule and consequently enable the Fluorescence Imagihgne Nanometer Accu-
racy (FIONA, [19]). Even without special manipulation ofetsample, it is possible to
extract more information form the optical signal if the nwenlof photons hitting each
pixel in an image and their arrival times are both recordeg] P0]. Alternatively, it is
also possible to exploit other kinds of luminescence to gaatial and structural infor-
mation about the sample. Especially the electrolumineseand radioluminescence are
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frequently employed in the semiconductor analysis and magdgesearch, respectively.

Even more options exist if the distances between two or mauecss are to be measured
instead of their absolute positions. The suitable methaodade Forster Resonance Energy
Transfer (FRET, [21]) between fluorescent molecules anil shthe plasmon resonance
due to interaction of closely spaced metallic nanopasi¢®?]. The former works best
over short distances of up to 10 nm, whereas the latter iadiete for longer distances up
to 70 nm. Finally, if the motion of an object needs to be traick&hout knowing its abso-
lute position, interferometric methods can provide a netsomh below 1 nm even with non-
labeled samples. In that sense, the Differential InteniegeContrast (DIC) microscopy is
sensitive to displacements on the order of 1pmH¥%23].

2.2 Scanning Near-field Optical Microscopy

There exists an entire family of high resolution imaginghteiques known as Scanning
Probe Microscopy (SPM) which has not yet been mentionedsrnrtroduction. Different
SPM variants cover a wide spectrum of contrast mechanismsiding mechanical (AFM
[24]), electric (STM [25], KPFM [26], EFM [27], SCM [28]), ngnetic (MFM [29, 30],
MRFM [31, 32]) and optical (SNOM [33, 34], PSTM [35]) phenonae with or without
labeled specimens. SPM techniques routinely reach résofunh the nanometer range and
some are even capable of resolving details on the atomie.sthé common characteristic
of all SPM variants is the use of sharp probing tips to scarsthréace of the specimen.
Either the probe or the specimen are mechanically moved frigel to pixel, line by line,
to obtain a raster image of the specimen by recording theepsample interaction as a
function of their relative position. Some general shortours of the SPM techniques
follow from this kind of image acquisition. In particulahté probing is limited to the
surface of the sample, and the relatively long image adipistimes are necessary to
complete the scanning process.

Historically, the SPM was founded with the invention of theaBning Tunneling Micro-
scope (STM [25, 36, 37]) in 1981 by G. Binnig and H. Rohrer, vglotved the problem
of achieving and maintaining very precise control over tlstashce between the probing
tip and the sample surface despite all external disturlsaliike noise and vibration. The
STM measures the current of electrons tunneling betweeprthlge and the sample sur-
face, which makes it applicable only to conducting and sendccting materials. The
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Atomic Force Microscope (AFM, [24]) was developed shorfigavard to enable imaging
of the various samples independent of their conductivitythie AFM, the probing tip is
attached to a small cantilever which deflects in respondeetodriations in the interaction
force between the probing tip and the surface of the speciréth very sharp probing
tips, even sub-atomic resolution can be achieved[38] affiereint kinds of forces can be
probed depending on the way the probing tip is coated or iomatized.

The SPM principles can be extended to optical probing as Wiéle basic idea actually
predates the development of STM and is attributed to Syngealvkady in 1928 proposed
a method for high resolution optical imaging by opening alsagerture in an otherwise
opaque screen. The aperture would be held in the immediaieénpity of the specimen,
thereby preventing the effects of diffraction to escalale the transmitted light reaches
the specimen. This idea was first implemented in practice §ly &nd Nicholls in 1972
[39] using microwaves of about 3 cm wavelength. It took apott? years before the first
near-field optical microscope was constructed on that gri@éendependently by D. Pohl
[34] and by A. Lewis [33] and their coworkers. Today, the momnmonly used aperture
probes are metal-coated single-mode optical fibers withallspening at their end [40],
as illustrated in Fig. 2.3(a). The resolution improves asaherture is made smaller, but
this simultaneously leads to a rapid decrease in the trassoni efficiency. The resolution
of aperture SNOM is thus in practice limited to abautl0.

(a) (b) (c)

Figure 2.3: Comparison of SNOM variants: (a) aperture, f®rareless, and (c) tip-on-
aperture.

An alternative method that provides completely wavelengtiependent resolution was
first published in 1985 by Wessel who suggested to exploi¢tienced field in the vicin-
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ity of a small particle for illuminating the sample [41]. Thest near-field optical micro-
scopes based on this principle were built in 1994 by Zenhaieteal. [42] and by Inouye
and Kawata [43]. They used metalized AFM probes instead @fotiiginally proposed
small particles to create an optical "nano-focus”, illasdd in Fig. 2.3(b). The size of the
nano-focus depends only on the tip apex radius, thus prayitie same resolution with the
visible and infrared light, in both cases on the order of 1(#4+-46] and below [47]. The
imaging mechanism in the apertureless SNOM is based on tieabinteraction between
the probe and the specimen, mediated by the evanescent fidldsinteraction modifies
the amplitude and/or phase of light waves scattered by thiegmaind subsequently detected
by far-field methods. Because the scattered light represkatmeasured quantity in aper-
tureless SNOM, this SNOM variant is also called the scaitetype SNOM (s-SNOM).

Among possible scattering channels, elastic scatteritagygely predominant. However,
Raman scattering can also appear [48] and can be extractedtlre elastic scattering
background by filtering. The same can be done with light oflded frequency which
is generated by virtue of second harmonic generation if #ld fntensity at the tip apex
is strong enough [49, 50]. Single- and two-photon fluoreseezxcitation by s-SNOM
probes have also been reported [51, 52]. It should be nogtdittike most other scanning
probe techniques, the near-field optical microscopy camddsect objects located at some
distancebelowthe sample surface [53, 54]. Finally, being built upon theVARhe s-
SNOM can also provide the topography of the sample surfavel&neously with the
optical image.

Besides all the advantages of the s-SNOM, there exists daadb$or its application in op-
tical imaging due to the already mentioned large backgraeoadtering. The background
scattering is not related to the probe-sample near-fiedtastion but can nevertheless pro-
duce contrasts in s-SNOM images, thereby falsifying theon titis reason, a large portion
of development efforts has been devoted to the suppresktbe background [47, 55-58]
ever since the first experimental realizations of the s-SNDMs thesis is no exception to
the said trend and includes an entire chapter (Chapter 6}ekto the theoretical modeling
and experimental suppression of the background scattering

It is also worth noting that a hybrid between the aperture apertureless SNOM has
been recently introduced by H. Frey et al.[59, 60]. The psobged in this method are
known as tip-on-aperture (TOA) probes, illustrated in F@3(c). With the TOA, the

evanescent field generated by the aperture is additionahgreced and confined by the
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small tip. The presence of the small tip thus addresses bath problems of aperture
SNOM, namely the poor topographic resolution and the trasson-resolution tradeoff.
Nevertheless, a widespread usage of TOA probes is stileingttby the very demanding
fabrication procedure. Furthermore, the aperture linhigsrange of wavelengths the TOA
probes transmit sufficiently well and renders them unstetédr operation with IR and
longer wavelengths.

2.3 Scattering-type Near-field Optical Microscope

Based on the presented overview of imaging techniquespirtaieless or scattering-type
scanning near-field microscopy (s-SNOM) can be identifiethasonly method offering
nanometer-scale optical resolution in the mid-infrareecs@l range. The investigation of
optical properties in the mid-IR spectral range is in turrtivaded by the fact that mid-IR
photon energies correspond to the energies of vibratiomales of chemical bonds be-
tween atoms in molecules and crystals. The vibrationalggngpectra are highly specific
to each kind of molecule or crystal and are thus often regbadefingerprints” of a mate-
rial’s chemical composition and structure. The sensitigitIR s-SNOM (also named the
scattering-type Scanning Near-field Infrared Microscap8NIM [61]) to chemical com-
position has already been demonstrated several times 4424-65]. One of the topics
elaborated in this thesis is the extension of the s-SNOMiegupdn range from analyzing
the chemical composition to the investigation of the criystiaicture [66, 67], presented in
Chapter?7.

As a reference for the further analysis of the s-SNOM prilesipand applications, the
anatomy of the scattering type near-field optical microsaaged in this work is presented
in Fig. 2.4. The description of its functional units is prded in the following sections.

More details about this setup can also be found in [68].

2.3.1 Atomic Force Microscope

The atomic force microscope (AFM) shown on the left-hanck 0fl Fig. 2.4 represents
the core upon which the s-SNOM is built. It consists of a p&eotric scanner capable
of positioning the sample with nanometer precision in themxd y-directions and with
angstrom precision in the z-direction.
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Figure 2.4: Schematic representation of the s-SNOM setdppted from [45].

The probing tip is affixed to the bottom side of the cantilev&he cantilever is driven

to oscillation in z-direction at its resonant frequerfgywith an amplitude of about 20 to
50 nm. The probe and the sample are maintained at such aaigteat the probe touches
the sample surface once per oscillation period. This modedi operation is known as

the "tapping” or intermittent contact mode.

The amplitude of the cantilever vibration is monitored bffaeting a focused laser beam
from the top side of the cantilever and detecting it by a feegment photodiode which is
sensitive to the beam deflection from its central positidme fheasured vibration amplitude
is used to regulate the tip-sample distance in a closed laiprioves the sample away from
the tip if the vibration amplitude decreases below a presetevalue (set point), and the
other way around. By recording the vertical position of thenple as a function of its
lateral position, a three-dimensional relief or topographthe sample is acquired.

2.3.2 Probe lllumination

What distinguishes a s-SNOM from an ordinary AFM is the pneseof an additional
high-power laser which is focused onto the probing tip. Tigktlfrom this laser polarizes
the probing tip which responds by emitting scattered raafian all directions. The light
scattered back along the illumination path is collected r@edrded as the optical signal.
Itis important to note that the optical near-field interantbetween the probe modifies the
amplitude and phase of the scattered light and thus enablgsteal map of the sample to
be constructed.

For the experiments described in this thesis, @ GSer tunable in the 9 11 pum wave-
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length range was employed as the light source. Reflectiiead@ements were used to
steer, focus and collect the light in order for the same patietusable both with invisible
IR beam and with auxiliary visible beam which served as td@i adjusting the optical

components.

2.3.3 Detection of Scattered Light

There are several known methods to detect the light scdttgra s-SNOM probe. A de-
tailed analysis and comparison of these methods is presantéhapter 6. Measurements
presented in this work were carried out using an interfetdmsetup shown in Fig. 2.4.
It is based on a Michelson interferometer whose referencems either moved between
two positionsA /8 apart in a stepwise fashion (Sect. 6.3.3), or continuouiblated with
an amplitude equal to.R1A (Sect. 6.4.2). In both cases the use of an interferometeeser
to coherently amplify the signal and, more importantly, bbain the information about the
scattered signal amplitude and phase.

However, the useful information about the sample is notatlyeobtained form the total
light intensity measured by the detector. Rather, the dematidn of the detector output
voltage at an integer multiple of the probe vibration freame(higher harmonic) is neces-
sary for obtaining reproducible high-resolution opticaprof the sample. The reason for
this is explained shortly.

2.3.4 Demodulation of the Detector Output

It was already mentioned in the introduction that there a@ ¢ontributions to the light
scattered by the probing tip. One of them depends on thefigddrinteraction between
probe and the sample and represents the useful signal radamlas the "near-field signal”.
The other part consists of the reflections from optical eleisiand the direct scattering by
the probing tip, both completely independent of the nedd-fieteraction. This part is not
useful in optical imaging and represents the unwanted s¥iéckground signal. It has
been observed that the light scattered by a probing tip amtauch larger proportion of
the background than the near-field signal [69].

Fortunately, the background varies only slightly with therge of the tip-sample distance

as long as it remains on the order of the tip radius. Over threesdistances, the evanescent
fields which mediate the near-field interaction vanish alncospletely, as described in
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Sect. 4. Itis therefore clear that for slight displacemeiftie probe just above the sample
surface, the change in the scattered field will be mostlyediy the change in the near-
field interaction strength, rather than the backgroundeacay. The small movements of
the probing tip required to separate the near-field from tekground signal are usually
obtained by vibrating the probing tip in the intermittenttact with the sample surface. If
we denote the tip vibration frequency Ky the periodic detector output signgt) can be
expressed in the form of the Fourier series

_ inQt

u(t) = n;o Un€ (2.2)
with u_p = uj; since the functiom(t) is always real. Only the first few terms in this series
are usually sufficient to account for the slow change in trekgeound signal. It was ex-
perimentally determined that already the first two terms=€ 0, 1) at infrared frequencies
and three terms§| = 0..2) at visible frequencies suffice[69]. Further termg & 2, i.e.
In| > 3) are needed to represent the rapidly changing near-figiabki It is therefore ex-
actly those higher harmonics that should be recorded irr dodextract the pure near-field
contribution to the scattering signal.

Mathematically, the coefficients, in the Fourier series from Eq. 2.2 are obtained from the
measured detector output voltage) as

Un = 1/T/z u(t)e "t dt (2.3)
" T )12 ' '

In practice, a lock-in amplifier can be used to extract siglefficientsu,. Alternatively,
a data acquisition system capable of performing Fast Fotrasform (FFT) can be em-
ployed to calculate several coefficientsin parallel.

The exact detector output voltage in each particular erpant depends on several param-
eters beyond the near-field interaction. These parameidtglie the detector responsivity,
illumination intensity and incidence angle, numerical rape of the objective used for
light focusing and collection, the shape of the probing dipd so on. To be able to com-
pare the results of the measurements made in different iex@etal conditions, it is thus
customary to consider only threlative contrastdetween different regions in the optical
map of the sample.
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2.4 Dipole Model of Probe-Sample Interaction

Figure 2.5: Point dipole model of the probe-sample intéoactor perpendicular (left)
and parallel (right) orientations of the probe dipole widlspect to the sample
surface.

There exists a simple model for predicting relative s-SNQMtrasts between different
materials. It is known as the (point) dipole model, first deped in the context of Ra-
man scattering [70, 71] and later reused to describe theepsalple interaction in the
apertureless near-field optical microscopy [57, 72, 73].

Within the point dipole framework, the probing tip is repeated by a point dipole assum-
ing the position and polarizability of a sphere of radrRignscribed into the probing tip
apex as depicted in Fig. 2.5. The dipole polarizability @msently equalsr = 471R3(s —
1)/(e+ 2) and the dipole moment induced by the external illuminat®p + aEg, with
Eo being the strength of the illumination electric field.

The second constituent of the point dipole model is the "onitmage” of the probe dipole,
formed in the sample. For the tip dipgbenormal to the sample surface (Fig. 2.5, left), the
mirror dipole has the strenght = 3 p, with the "reflection coefficient3 = (&s—1)/(&s+

1) and s the dielectric constant of the sample. The mirror dipole deick on the probe,
thereby polarizing it even stronger. This additional pngpbdipole moment increases the
strength of the mirror dipole, which in turn induces furtipetarization of the tip, and so
on.

Mathematically, such an interaction can be expressed ifotine of an infinite geometric
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series

p=po } d", (2.4)
2,

with po being the initial dipole moment. The factgr= Ap/p represents the relative in-
crease in the probe dipole momenafter a single reflection from the sample. When the
infinite sum in Eq. 2.4 is evaluated, the dipole momerepresents the total dipole moment
of the tip as a result of its interaction with the sample.

An alternative way to obtain the dipole momenitelies on the self-consistency condition.
We start by noting that the mirror dipole strengthincludes the initial probe dipole mo-
mentpg and the interaction-induced pauit Sincep; is induced byp/, we get the following
system of equations:

P = B(po+pi), (2.5)
p = fp,

wheref is a so far undetermined function of the distance betweetighend the sample.
Insertingp’ from the upper equation 2.5 into the lower one, we obfgia 3 f (po+ pi).
Substitutingp; = p— pp andB f = g, this can be expressed as

P=pPo+gp (2.6)

Equations 2.4 and 2.6 describe the same physical situatitiresg solutions must be equal.
And indeed, in both cases we obtain

p=-—. (2.7)

The functionf contained ing = Bf should be determined at this point for a complete
solution. Its value depends on the orientation of the dipadewill be shown next.

Let us first consider the dipole oriented perpendicularithtosample surface (i.e. parallel
to the z-axis), shown in Fig. 2.5 left. Following the coomli@ system choice of Fig. 2.5,
this orientation can also be named the z-orientation. Ifdiséance between the sphere
representing the tip and the sampléHisthe separation between the point dipole and its
mirror image isD = 2(R+H). The field produced by the mirror dipof2 at the position
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of the tip dipolep is equal to
p/

&= D3

(2.8)

The field E; induces a dipole mome#tip = aE; in the probe. The functior is thus
f,=Ap/p = a/2nD3. Expressing the distan@in terms of the tip-sample separatibin
the factorg in Eq. 2.7 becomeg, = 3 f, = Ba/16m(R-+H)3. We can thus assemble the
final solution for the vertical tip dipole moment

pr=Eo——o5— (2.9)

1- 16m(R+H)3

Instead of the dipole moments, it is customary to use thectfte polarizability def =
p/Eo. The value ofoe ; is obvious from Eq. 2.9:

a
etz = ———a5— (2.10)

"~ 16m(R+H)3

For a dipole oriented parallel to the sample surface (x-axiSig. 2.5), its mirror image
exhibits an anti-parallel orientation, i.p. = —p. The mirror dipole field at the tip dipole
position has also got a negative sign and equals

p/

Ey=——— .
X 41D3

(2.11)

This results irgx = B fx = Ba /32m(R+H)2 and the final expression analogous to Eq. 2.10

is then easily obtained:

a
Oeftx =~ (2.12)

- 32n(R+H)3
Due to the linearity of the system there is no cross-talk betwthe parallel and the per-
pendicular dipoles, so that any dipole orientation can bmgosed into the- and x-
orientations. However, this is rarely needed if the truaéigponse is to be mimicked be-
cause an elongated probing tip has a high preference forelldeafiong the z-axis, making
it the only component worth considering. An exception mayhasllumination containing
only the x-component of the field (e.g. s-polarized lightiet only probesxes x. But in
this case the signal level would be very low due to the misBgld enhancement by the
probe.

If a dipole is driven by an oscillating field, it will respong ln oscillating dipole moment.
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Far away from the dipole, its radiated field approaches tha faf a spherical wave. The
field oscillation amplitude is thereby directly proportao the dipole momern and thus
to aeff as well. The knowledge of the effective polarizability oéttip thus is sufficient to
predict therelativesignal strength detected in the far field. It is thereby cmsixy to define
the scattering coefficiert = sé? as the ratio of the incident fielfy and the scattered field
E at some point in space:

E=0E,. (2.13)

Sinceo defined this way is proportional to the effective polariziépiaes, the following
identity holds for any two materials 1 and 2 whose responseeissured in the same setup
and under the same conditions:

Oeff,1 : Qeff2 = 01 O02. (2.14)

In other words, the quantitieg and def can be used interchangeably as long as only
relative contrasts are measured.

Finally, it should be noted that the point dipole model wagiaglly introduced in a slightly
different form than used in some later publications [46, 73], and presented here. The
original version included the radiation of the mirror dipab give [57]

a(1+B)

apB
1- 16m(R+H)3

et = (2.15)

This approach was followed in numerous later publicatidnsiodification of the original
expression (Eq. 2.15) was also suggested, with an addif@actar (1+r) accounting for
the indirect illumination of the tip via the reflection froimet surface[76]. Therely, stands
for the Fresnel reflection coefficient of the p-polarizedtigin Sect. 5.2 it will be shown
that, strictly speaking, none of the above variants is cetep} correct, and the proper way
to handle the mirror dipole radiation will be derived.

Finally, it should be noted that due to its simplicity, th@ale model lends itself well to
extensions. In particular, an analytical solution has b&ained for systems consisting
of up to four mutually interacting dipoles [75].
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2.5 Scattering-type Near-field Optical Spectroscopy

The full power of infrared near-field microscopy is reveabadly in conjunction with spec-
troscopy. Infrared nano-spectroscopy resulting from doisibination can exploit vibra-
tional fingerprints of molecules and crystals to providerstoal and structural analysis of
specimens with the resolution on the order of 10 nm [44, 64, 6lbwever, the current
s-SNOM state of the art permits imaging only at one fixed wavgih at a time. Although
indications exist that true parallel near-field spectrpgamay be possible [77], the devel-
opment has not yet matured to the point where it could be usedftine measurements.
For the time being, the near-field spectroscopy has to bempeed sequentially, following
the procedure outlined below.

2.5.1 Construction of Near-field Spectra

To construct a complete near-field spectrum of a specimersahttering signal resulting
from the near-field interaction between the tip and the sarhpls to be recorded at a
number of wavelengths. For a successful material identidicat is also necessary that the
said wavelengths cover the spectral region where the vim@tmodes of the investigated
molecule or crystal can be excited. Once a sufficiently brgaelctral region has been
covered and the desired density of wavelengths has beemeckathe near-field spectrum
can in principle be assembled from those measurements.

However, the scattering signals recorded at different Veggghs cannot be directly com-
pared to each other because of the varying laser power, degmmant and phase, detector
sensitivity and probing tip radiation pattern, which carchkange with the wavelength. To
overcome this problem, the measured material responselatevelength must be nor-
malized to the response of a reference material which is krtovexhibit no spectral vari-
ation over the wavelengths of interest. In the mid-IR, thestm@mmonly used reference
materials are gold and undoped silicon. It is thereby imgrdrto measure the signal from
the reference material under exactly the same conditiotigeaggnal from the investigated
material. In practice, this usually means that both theaiffom the investigated material
and the reference material should be acquired in a single sta facilitate this, a thin
(30-60 nm) Au film is often evaporated on a part of the samptfasa and the scan region
is chosen such that it includes a portion of the surface eavBy the Au film.

The normalized signal may finally be assembled into a nelardgectrum which can be
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compared with other experiments or theoretical predistion

2.5.2 Phonon-enhanced Near-field Interaction
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Figure 2.6: Dipole model prediction for the amplitude (aplghase (b) of the s-SNOM
signal vs. real part’ of the sample dielectric function. The imaginary partof
is set toe” = 0.2 and the tip radius and vibration amplitude are s&® 635 nm
and A = 25nm, respectively. The signal is normalized to the respmisa
perfect electric conductor.

One intriguing theoretical prediction of the dipole modekhe existence of a near-field
resonance where the real paftof the sample dielectric functioa = &’ +i€” assumes
values close t@’ = —2, accompanied by low values of the imaginary @t This res-
onance is clearly seen in Fig. 2.6(a) displaying the prediefffective polarizabilityores ,
of the coupled probe-sample system as a functiog’ afi the overall dielectric function
e=¢+402i.

Such near-field resonances indeed exist and have been Bextvel using crystalline sil-
icon carbide (SiC) as the sample and infrared light with uevgths between 9.2 um and
11.2 um [63]. The near-field spectrum of SiC typically obémirby s-SNOM within the
aforementioned wavelength range is shown in Fig. 2.7(b)e dlserved phenomenon is
attributed in [63] to the phonon-enhanced near-field imtiwa since it relies on resonant
excitation of the crystal lattice vibrations in the sampldie physics behind this effect is
elaborated in more detail in Ref. [68] and also in Chaptertisfthesis.

Since the position and the height of the spectral peak gktatthe near-field resonance de-
pend on the energies of vibrational modes in the examinexdalyyhey are highly material-
specific, just like the far-field IR spectra. This provides tpportunity for infrared spec-
tral fingerprinting with ultra high resolution, better thai500 [66, 67]. Unfortunately, by
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Figure 2.7: Second-harmonic (a) amplitude and (b) phasarspef a crystalline SiC sam-
ple normalized to Au. Shown are experimentally obtainec dpoints, full
line) and the prediction by the dipole model (dashed linbjamed with the

SiC optical constants from [78]. The probing tip radius Was 35 nm and the
vibration amplitudeA = 25 nm.

comparing the experimental spectra and theoretical piedgin Fig. 2.7 (a) and (b), we
see that although there igjaalitativeagreement between them, the agreemenpantita-
tively not very good. Unambiguous material identification from rilear-field spectra thus

requires an improvement in the theoretical descriptiomefdrobe-sample interaction and
motivates the development of a new model in Chapter 5.
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Sect. 2.4 introduced the dipole model of the probe-sampdeantion in the scattering-type
near-field optical microscopy. This model represents tB&®M probe by a point dipole
to which the sample responds by a redistribution of chargeecto the surface. Above
the surface, the electric field due to the polarization ofsd@ple is equivalent to the field
that would be produced by a "mirror image” of the probe digméow the sample surface
(Fig. 2.5). In the quasi-electrostatic limit, the ratio btimage dipole momend to the
probe dipole momenp is equal to

Bzg’zes—l
P &+1

(3.1)

An interesting property of the electrostatic "reflectioretfiwient” § is its ability to assume
absolute values significantly larger than 1 under speciatimistances. The denominator
in Eqg. 3.1 indicates that this happens when the dielectnctfan es = €.+ i€l is close
to €, = —1 simultaneously witte” < 1. However, such values of the dielectric function
are not encountered in electrostatics at all. They are ngta@mmon in electrodynamics
either, since dielectrics are characterizecby 1, and metals have largely negatsieand
high values of!. Nevertheless, many materials, including all metals amticgenductors
as well as some insulators are characterized by at leastavr@nmaterial-specific range
of wavelengths with the dielectric function closegto~ —1. As we have seen in Sect. 2.5,
such situations are of special importance in the near-fietstascopy because they give
rise to near-field resonances. The attention will be nowflgreevoted to the analysis of
physical mechanisms responsible for the negative valudkeotlielectric function, first
from the classical and then from the quantum-mechanicait @diview.
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3.1 Lorentz Oscillator Model

In a very simple classical approximation, the sample igégkas a collection of uncoupled
(mechanical) harmonic oscillators each with masand force constark. The oscillators
couple to the electric field through their dipole momeptrelated to the oscillator elon-
gationx aspy = ex This approximation is known as the Lorentz oscillator maael its
short outline will be presented here. For a more detailedrinent, standard textbooks such
as [79] or [80] can be consulted.

If the Lorentz oscillators are driven by the external eledield of the formEge !, their
equation of motion reads
MK+ ymx+kx= e Ee ', (3.2)

where a phenomenological damping tegmx has been additionally included. The ampli-
tude of the steady-state solution of Eq. 3.2 is given by

eBEy/m

= ; 3.3
X0 F— P —iwy (3.3)
wherewy = /k/m.
From the dipole moment amplitug® = e x we obtain the polarizability
g_Po___&/m (3.4)

"B B-w?-iwy

A regular three-dimensional array of Lorentz oscillatorwva volume density N has the
polarization density equal to

Ne&/m
P=NaEg = Eo. 3.5
aFo P—w?—iwy (35)
From Eq. 3.5, the susceptibility(w)=P/Eq can be directly extracted:
N€&/m
= 3.6

and therewith the dielectric functios(w) = x(w) + 1, which can also be written in the
form

+1 (3.7)
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with f = N € /mbeing the oscillator strength. However, a single oscillatgperiences not
only the external driving field, but also the field due to itggdors. This effects leads to
the following relation between the dielectric functiefw) and the polarizabilityr (w):

(@-1 Na(w)
(w)+2 - 3g

€
- , (3.8)
also known as the Clausius-Mossotti equation.

In the case of weak damping, the dielectric function obthifnem 3.8 can still be put in
the form of Eq. 3.7 by shifting the eigenfrequenayto o' = wp — /3.

Finally, it should be noted that more than one type of odoitlacan exist in a given mate-
rial. The dielectric function is then obtained by summing Husceptibility over all reso-
nances:

f.
e(w):1+§wj2_w2‘_iww, (3.9)

wherewj, fj andy; are the natural frequency, oscillator strength and dampasgficient
pertaining toj-th resonance, respectively.

If some resonance frequenay is well separated from all otheo;, j # O, the dielectric
function in the vicinity ofwy can be described in a very simple way. To this end, the
influence of all resonances belaw (w; < wy) can be neglected, and the contribution of
resonances above (wj > ap) can be collected into the single term
fi
Eo =1+ Z —5. (3.10)
wj>wy j

The dielectric function aroundy is then given by

fo

g(w):£°°+w§—w2—iwyo'

(3.11)

Eq. 3.11 will be used in the following to determine when thigetion factorg in Eq. 3.1
is expected to peak.

A typical behavior of the dielectric functioa and the electrostatic reflection factgris
shown in Fig. 3.1. Both quantities were calculated accgrtirEg. 3.11 with the following
parameterse,, = 6.56, fo = 2 x 108 cm2, wy = 797 cnt L andyy = 6 cm L, which provide
an approximate fit to the SiC crystal dielectric function.

From Fig. 3.1 we see that there are two frequencies whereetilepart of the dielectric
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Figure 3.1: Real (full line) and imaginary part (dashed)iok(a) the SiC dielectric func-
tion &, and (b) the quasi-electrostatic reflection coeffici@nt (es—1)/(&s+
1) as a function of the frequenay.

function assumes the valg ~ —1. The lower of them lies just above the resonance
frequencywy. However, at this frequency the phase between the drivitdg) Eg and the
material polarizatio? is around 90, implying that the velocity (or current) is irggle with
the driving force (i.e. electric field). In such a situatitve tenergy is efficiently dissipated
by the oscillator, resulting in a large imaginary p&ftof the dielectric function. Due to
the largee?, the reflection coefficien given by Eq. 3.1 does not exhibit a maximum at
this point. Instead, the maximum value ®fs reached at the second frequency for which
g, = —1, located just below the end of the negatalegange. The polarization lags behind
the driving field by almost 180, so the absorption is low at fh@int. The low value of

g/ permits the reflection factgB to assume large values, limited only be the damping
coefficientyp.

3.2 Bulk Polaritons

The Lorentz oscillator model used so far represents a putasical description of the
material response to the EM field. A more accurate quanturcharecal treatment of the
light-matter interaction yields the result in the same famthe Eq.3.7[81]. However,
the oscillator strengtif has to be calculated in a different way because the quantum-
mechanical description of the system departs substanfi@in the Lorentz oscillator
model. In particular, the classical oscillator is replatgda quantum system capable of
making transition between two stateandl whose respective energy levels are separated
by AE = hwy. The overall oscillator strengthresulting fromN such uncoupled oscillators
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per unit volume is then given by

(_ 2Nwy
N &h

HR?, (3.12)
WhereHjﬁ’ = (l]er|j) is the matrix element of the dipole transition between theesf and

I. For dipole-forbidden transitions, quadrupole matrixw@bats should be taken instead
of HJ!,D. However, they are much weaker than the dipole transitiowisggenerally do not
suffice to make the dielectric function negative. In any céise calculation of the oscil-
lator strengthf from first principles is a demanding task. Rather than from3ELR, the
oscillator strength is thus in practice usually determibgdneasuring the reflectivity of
the sample and fitting the measured values to Eq. 3.11.

Apart from the aforementioned quantitative differencensetn the classical and the quantum-
mechanical treatment of the light-matter interactionrefis also a qualitative one. In par-
ticular, the classical picture allows for an arbitrary dlation amplitude and consequently
an arbitrary oscillator energy. On the other hand, a quasmhanhanical harmonic oscilla-
tor is quantized, i.e. possesses only discrete energyslefzeirthermore, the quantization
applies equally well to the electromagnetic field oscila and the oscillations in matter
involving either single particles or collective oscillais of many particles. The quanta of
electromagnetic field are thereby known as photons, and.ituetg of oscillations in matter
are named according to the nature of the oscillation. Famg@i@, collective oscillations of
electrons against the ions in a metal ("plasma oscillatidms/e quanta know gslasmons
[82]. Analogously, the crystal lattice vibrations hgu@onons [83] as their quanta, and the
excitation of electron-hole pairs in semiconductors appé@aquanta known asxcitons
[84-86].

Of particular interest here is the coupling between thetelatagnetic waves and the os-
cillations in matter. For this coupling to be efficient, itnecessary that the oscillations
in matter be associated with the polarization of the mdteRar plasmons and excitons
this is always the case, whereas the phonons can exhibpribggerty only in polar crys-
tals, i.e. crystals with at least partially ionic characteraddition, the interaction of light
with phonons is only possible for optical phonons, charaatd by atoms in the unit cell
oscillating against each other. This is in contrast to apoysonons, where atoms in a
unit cell oscillate in phase with each other, so their oatidhs are not accompanied by a
polarization unless the material is piezoelectric.

In all cases where the electromagnetic waves couple to tlaipation waves in matter,
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mixed modes are formed. Quantum mechanics requires thossmiaves to be quan-
tized, and the resulting quanta are quasi-particles knapokaritons [87, 88]. In par-
ticular, when photons couple to plasmons, the resultingigoarticles are called plasmon
polaritons. In case of photon-phonon coupling we get phgaaritons, and so on. Since
the polaritons are formed by coupling of two bosons, thep @lgssess integer angular
momenta.

Properties of all kinds of polaritons largely depend on thergy difference between pho-
tons and the quanta of matter polarization. When the eneiggnaich is large, it is cus-
tomary to describe the resulting polaritons as photonsagang in a dielectric medium
with € > 1. Such approach is also supported by the polaritons’ disgperelation, which
is in the region of weak coupling just a straight line with ttenstant slopev/k = ¢//€.
This can be seen in the lower part of Fig. 3.2 which containbtqgj the dispersion re-
lation derived from the dielectric function in Fig. 3.1(d).should be noted that although
this dispersion is based on the classical model (Eqg. 3.ti%)¢onsistent with the quantum-

mechanical results [81].
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Figure 3.2: The dispersion relatian= ck/+/¢ of phonon polaritons in a SiC crystal, de-
rived form the dielectric function shown in Fig. 3.1(a). Tiéd line represents
the real part of the wave vector, and the dashed line the maagipart. The
dotted line depicts the wave vector of the photons in vacuwentfie light line).

As the photon energyw approachebawy, the coupling between electromagnetic and polar-
ization waves becomes stronger. Photons gain additionalentum due to this coupling
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and their dispersion relation deviates from the straigie.liThis is also accompanied by
a fast rise in the imaginary pakt of the wave vectok, represented by the dotted line in
Fig.3.2. Large values d{’ signify a rapid extinction of the polaritons as they progaga
through the material. By comparing Fig. 3.2 and Fig. 3.1M{a,can conclude that the ex-
tinction around the frequenay ~ wy is mainly due to absorption because of large values
of & aroundw ~ wy.

3.3 Surface Polaritons

A
D —

metal / dielectric &£<-1

T ANSSZT NS

Figure 3.3: Surface polaritons propagating along the fiaterbetween two materials with
opposite signs of their dielectric function. In the directiperpendicular to the
surface, the electric field of surface polaritons decay®egptially.

Going to frequencies aboveay, the imaginary park” of the wave vector remains large
over the entire range of frequencies with negatieln the range of negative/, the po-
larization in the material opposes the external electrid fteexd causes the photons to be
reflected from the sample surface, thus again contributritge extinction of polaritons.
Obviously, polaritons cannot propagate through the malterithis frequency range. Nev-
ertheless, modes exist that propagalttng the surfacef the sample and are evanescent
perpendicular to the surface, as illustrated in Fig. 3.3chSuodes are known asirface
polaritons and they obey a dispersion relation different from the butkyme) polaritons
[89-91]. On the interface between a medium with a dielecmestants,, and a material
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with a dielectric functiore(w) the dispersion relation of surface polaritons is given by:

w | &(w)Em
ksp= —

o= (3.13)

A plot of this relation is shown in Fig. 3.4 using the same pseters as for the volume
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Figure 3.4: The dispersion relatian= ck/+/&/(€ + 1) of the surface phonon polaritons
on an interface between a SiC crystal and vacuum calculaied the dielec-
tric function from Fig. 3.1(a). Shown is the negatiwdrequency region be-
tweenwro = 800cnT ! andw o = 970cnt L. The full line represents the real
part of the wave vector, and the dashed line the imaginaty phe dotted line
depicts the wave vector of the photons in vacuum (i.e. thd lige).

polaritons in Fig. 3.2. We see that the momentukgpe of surface polaritons is in principle
larger than the momentufw/c of photons outside the sample. Where this is true, the
surface polaritons can neither be directly excited nor bag tadiate into free space if the
surface of the sample is flat. Alternatively, when the momemof surface polaritons is
smaller than the momentum of photons, the surface polariéma no more bound to the
surface and thus quickly cease to exist.

The boundaries of the spectral region with negativéear special meaning and names
depending on the kind of polaritons they are associated Wwitbonnection with the lattice
oscillations, the lower boundamy, is known as the transverse optical phonon frequency,
denoted bywro. The upper boundary’(w) = 0 is the longitudinal optical phonon fre-
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guency,w o. Its name is derived from the fact that in the absence of dagyghe po-
larization field in the material is equal and opposite to theing field and thus cancels
it, making the existence dbngitudinal optical waves possible at this frequency. These
longitudinal waves are pure polarization and not reall®tenagnetic waves since they
are characterized by vanishing magnetic fidlénd inductiorB. Being longitudinal, they
also do not couple directly to the free-propagating lightalitconsists of transverse waves
only.

In metals, conduction electrons are usually depicted fogna free electron gas. Since
the conduction electrons are free to move through the mitate is no restoring force
associated with their displacement and the natural freqyuexy of their oscillations is
equal to zero. The restoring force appears only when elestmttempt to move out of the
metal. This is the case for collective oscillations of elexs against the positive ions in the
metal. Such longitudinal oscillations are known as elecplasma oscillations and their
eigenfrequency is the plasma frequeingy From the perspective of polaritons, the plasma
frequencywe plays the same role for plasmon polaritons as the longialdiptical phonon
frequencyw o does for phonon polaritons.

Finally, it should be added that the frequencies and w_o (or their analogs) are not
independent of each other. In general, the following refabetween the two frequencies
and the oscillator strengthholds:

f
wfo = wfo+ (3.14)

Eq. 3.14 is a variant of the Lyddane-Sachs-Teller equa®&h §nd enables the oscillator
strength to be determined if the frequencieg and w_o are known together with the
high-frequency dielectric constaas. All these quantities can experimentally obtained
from e.g. reflectivity measurements or with the aid of Ram@etioscopy.

The remaining oscillator parameter is the damping coefftggawhich is much harder to
determine. Nevertheless, a rough comparison of the danepieifjcients pertaining to dif-
ferent kinds of polaritons can be made. Instead of the dagngoefficienty, the oscillator
relaxation timer = 1/y is often specified. Phonons in defect-free crystals havenerl
relatively long relaxation times, on the ordermof= 10~12s. With the notable exception of
silver, the relaxation time of plasmons in metals is one to dnders of magnitude shorter
than that of phonons. On the other hand, the relaxation tineg@tons in semiconductors
may vary over several orders of magnitude depending on gq@apation and purity of the
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sample.

Since the strength of the near-field resonance observe®MQM is ultimately limited
by the damping of the polaritons, we can conclude that th@phgolaritons should yield
the strongest near-field resonances. In Chapter 7 it wilhlogva how this resonances can
be utilized as a very sensitive method for analyzing thetahgtructure on the nanometer
scale. Another, very intriguing application of surface pbio polaritons is the coherent
emission of thermal radiation [93], enabled by the diffractof surface phonon polaritons
by a grating etched in the surface of a SiC crystal [94].

For the near-field microscopy it is important to note that deasity of surface polari-
ton statesgdksp/dE peaks around the frequenoygp wheree’(wsp) = —&m, Which is the
same frequency where the quasi-electrostatic reflectiefficient f has a maximum. It
might therefore seem logical to ascribe the near-field r@soa described in Sect. 2.5 to
the excitation of surface polaritons. However, in Sectibvidll be shown that the waves
participating in the near-field interaction between a sanapid a probing tip have spatial
frequencies far above the spatial frequency of both prapagaurface polaritons and vol-
ume polaritons. For this reason, the distinction betweentype of polaritons does not
seem to be of importance in the context of s-SNOM near-fisddmances.

Nevertheless, surface polaritons lend themselves njtucathe investigation by scan-
ning near-field optical microscopy which is a surface scagmnethod by design. SNOM
and the closely related scanning photon tunneling mici@gs¢BSTM) have been often
employed for mapping the surface polariton propagatioaugh various structures such
as fabricated waveguides [95] and corrugated surfaces BgJmaking a series of such
measurements at different illumination frequencies, tepatsion curve of the surface po-
laritons can be traced out [97].

It is interesting to note that the surface polaritons are asponsible for the existence
of the near-field "perfect lens” [98]. The near-field perfeaats comprises only a slab of
material withe = —&, and produces an almost perfect image of the source at a cistan
Ximage = 0 — Xsource Whered represents the lens thickness. Image formation is thereby
mediated by surface polaritons whose dispersion relakgn3.13, yields infinitely large
wave vectorkgp for € = —gy, , hence posing no limit to the spatial frequencies which
can be transferred by surface polaritons. However, theiton& = —&;, can be exactly
satisfied only in the absence of damping. In practice, théefidampinge” # 0 limits

the magnitude oksp as shown e.g. in Fig. 3.4 and degrades the perfect lens piesger
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exponentially with the lens thickneds The resolution of a "perfect lens” is hence always
limited and such a lens is in general only useful in the neadfiegimexsource< d < A.
Subwavelength resolution can nevertheless be achievedassiemonstrated using both
surface plasmons [99, 100] and surface phonon polaritdifs [102].

One further peculiarity of surface polaritons is the exisgeof guided modes on cylindri-
cal or conical waveguides exhibiting no cutoff regardldsthe waveguide diameter [103].
The surface polariton wave vector thereby rapidly increasgiéh shrinking waveguide di-
ameter, resulting in the surface polariton super-focugifigct [104—106] with potential
applications in near-field optical microscopy [107]. On titker side, thin rectangular
waveguides support surface polariton modes with largebrvgavelength field confine-
ment and propagation length in the centimeter range [10B-Ihey could provide the
basis for optical interconnects in integrated circuits fmmcdddressing individual elements
in such circuits [112-115].

3.4 Particle Polaritons

A particularly interesting situation arises when a matesigoporting surface polaritons
forms a small particle with the size much smaller than thbtligavelength. Surface po-
laritons in such particles are localized in all three spaliimensions and often referred to
as the particle polaritons [116, 117]. They are highly ies¢ing because of the large field
enhancement they provide in the vicinity of resonantly ectparticles [118]. The spectral
position and shape of such resonances, also known as HFréetionances, depend on the
material the particle is composed of, as well as the paiisleape. Analytical solution for
the field enhancement can be obtained in case of ellipsoattitjes with the semi-axes
c<b<a< A. Itturns out that a dipole mode is excited in such small pkasi, with the
maximum field enhancement at the surface of the particlediye

£—&m
la(€ — &m) + &m’

y= (3.15)

wherelj is the depolarization or shape factor defined by

© abc
la= da. 3.16
PN e et (3.10)
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A maximum in the field enhancemenbccurs fore = gn(1—1/l5) and is independent of
the particle size as long as the approximatoeg A is valid. In case of spherical particles
we have, = 1/3, ande = —2¢y, is the condition for the maximum field enhancement.

It has been proposed that a chain of closely spaced nanicteaimilar in size should en-
able one-dimensional energy transport with lateral confer on the subwavelength scale
by dipole-dipole coupling between the particles[119]. &xmental confirmation of the en-
ergy transfer in such an arrangement of particles and wasdaain [120]. An alternative
arrangement oh small particles of decreasing size in a self-similar chaas wredicted
to have focusing properties [121]. In the self-similar chdarger particles drive smaller
ones without being disturbed and an overall field enhanceofef can be achieved. This
results in an efficient nanolens with potential applicationthe near-field microscopy and
especially in particular single-molecule Raman spectpgevhich requires field enhance-
ments on the order of 2dor the weak Raman scattering to be detectable.

Nanoparticles can also act as a very efficient sensors whenidnalized such that they
preferentially bind a certain target molecule. Bindingloé target molecules modifies the
dielectric constangy, of the medium around the nanoparticle and causes a sligbtrape
shift of the particle plasmon resonance [122]. This shift ba observed in the scatter-
ing spectrum of the functionalized nanoparticles even fgeiy small amount of target
molecules.

Finally, metallic nanoparticles can be enclosed in a digteshell of a givene, and a
chosen thickness, or, alternatively, a dielectric corelmaoated by a metal shell to de-
liberately shift plasmon resonances to wavelengths betabeut 05 um and 5um [123].
Tuning the absorption of nanoshells to abaut 1.1 um, targeted and localized heating
can be achieved in living organisms since the physiologibabrption is very low in this
spectral region. This opens the possibility for targeteagdielivery and photothermal
therapy of tumors [124, 125].

The application mentioned above do not represent an exbalist. A vast effort has been

invested in the research of nanoparticles in the last de@akwith no sign of a decline.

Consequently, a number of novel applications of particllagidons as well as methods
for fabrication and detection of polariton-supporting aparticles can be expected in the
future.



4 Near-field Optical Probes

In Sect. 2.1 it was mentioned that the diffraction of lightilis the resolving power of

conventional optical elements such as lenses or concaversiirFor the same reason,
these elements cannot be used to focus the light to dimenbrlow roughly one wave-

length @). Near-field optical microscopy (Sect. 2.2) overcomeslimgation by utilizing

a largely subwavelength light source located in the imntediecinity of the sample.

Denoting the radius of a SNOM light source By, and the spatial frequencies in the
plane containing the source Iy, we can make use of the classical "uncertainty relation”
ApAvp, > 1. This relation is applicable to any pair of variables retaby the Fourier
transform, and in this particular case it yielig, > A ~1lsinceAp < A. From the Fourier
optics it is well known that spatial frequencies > A ~1 represent exponentially decaying
(evanescent) waves. This means that the field near a SNOWMsligince is predominantly
evanescent.

Being related to high spatial frequencies (lavgg, the evanescent waves are the key to the
high resolution. However, the results of optical probing @corded by a detector located
far away from the source in terms of the light wavelength. iObsly, the evanescent waves
do not extend to the detector and therefore do not contributtes detected signal. In other
words, an attempt in high-resolution optical imaging basethe strong field confinement
alone is not guaranteed to yield the desired information. til@ncontrary, this is only
possible if the evanescent fields can be converted into thyeagating waves which then
convey the information to the detection point.

The two major SNOM probe types (Sect. 2.2) can now be compaoad this point of
view. Aperture SNOM utilizes a small opening in an otherwopaque screen to confine
the light. Apertures smaller than about half the wavelergthibit transmission efficiency
decreasing with the fourth power of the aperture size [128}:1This results in a poor
coupling of evanescent into propagating waves for smalitapes and effectively limits
the resolution of an a-SNOM to roughly/10. In contrast, a long and sharp metallic tip
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of a s-SNOM is much more efficient in conversion between esee® and propagating
waves because the movement of free charges is essentiadigtucted along the tip, i.e.
in the direction perpendicular to the sample surface. Thdimement of charge by a s-
SNOM probe takes place only in the plane parallel to the serféhis plane is orthogonal
to the electric field oscillations, so the charge confinenter®s not impede the process
of absorption or radiation of electromagnetic waves. Owthis property, the s-SNOM
exhibits a wavelength-independent resolution limited/dny the radius of the probing tip
apex [45].

From the preceding description it is obvious that the shapkfanction of a s-SNOM
probe very much resemble those of an antenna. And indeedjripdest radio antennas
have the form of elongated metallic rods, with their lenggtimized for efficiency. In
the region of infrared and larger wavelengths their anadsgran be easily imagined and
fabricated [129-131] since most metals are good conduatdt®se wavelengths. In the
visible light range there are no such good conductors, bsttd some extent possible to
exploit small-particle plasmon resonances (Sect. 3.4 ahdtd achieve efficient coupling
between the near and far field [132, 133]. To compensate édattk of good conductors at
visible light wavelengths, alternative antenna geometiae/e also been proposed, yielding
significantly higher field enhancements than elongated oodsnall spheroidal particles.
They include bow-tie antennas [134-136], triangular [1&7d C-shaped [138] apertures,
and even self-similar chains of small particles with pregreely decreasing size [121].

This analogy between s-SNOM probes and antennas can bdifedhlay actually defining
the optical antenna as abject or device which efficiently couples the free-spackara
tion to highly localized electromagnetic field and vice @gfE39]. From this definition,
one important difference between classical radio anteandsoptical antennas follows:
whereas radio antennas have to transport as much chargesiblpdo one of their ter-
minals, for optical antennas it is additionally the concatibn of this charge that matters.
The reason for this additional requirement on optical amasrcan be understood by not-
ing that an optical antenna is more efficient if it producesrsier EM fields because this
leads to larger useful signals, and it is also better if itdoices tighter field confinement
because this results in higher resolution. Fortunatedyctiarge confinement favorably af-
fects the field strength, so that both performance critaral®e simultaneously improved.
The proportionality between the charge concentration aadi¢ld strength is thereby often
attributed to the "lightning rod effect” [140]. It relies dhe fact that the field strength near
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an equipotential surface is inversely proportional to tiwal radius of curvature. For the
near-field optical microscopy this means that in the wawgilenange where good electric
conductors exist, sharper probes will produce both betkt éionfinement and higher field
strength. In the remainder of this chapter, these two questill be studied in a more

guantitative manner.

4.1 Field Enhancement

A detailed numerical analysis of the field enhancement bN&8 probing tips can be

found in many papers, e.g. [141], [142], [143], [144], [14B}6], and [147]. However, an
analyticalexpression for the field enhancement would be more integestithe context of

this work since it would permit the probe-sample interactio be modeled in a relatively
simple way (Chapter 5). The best known analytically soleagbproximation to the s-
SNOM probing tip is a prolate spheroid in a uniform electreddi treated in Refs. [71],

[70], [148], and [145]. The adoption of this model is justfiBy noting that the apex of a
typical probing tip does indeed look much like the apex oft@espid. Furthermore, the tip
apex is also expected to be the decisive part for the nedrifisdraction with the sample
since it resides in the closest proximity of the sample. Hngdly different shape far away
from the apex certainly influences the radiation charasties of the probe, but not the
nature of the probe-sample interaction which gives risetdrasts in s-SNOM.

On the other hand, treating the illumination as a homogeméeld can only be a good ap-
proximation over short lengths. This sets an upper bourntttéength of a probe which can
be accurately modeled in the electrostatic approxima@sed on electrodynamic calcu-
lations of the field enhancement by realistically modelazbps [143], one can conclude
that the spheroid length should be kept below aboi#t in an electrostatic calculation.
Otherwise, the field enhancement can be significantly otieraged due to the neglected
dephasing effects.

Using an electrostatic approximation, the electric poéérground the probing tip can
be approximated by the potenti@ outside a prolate spheroid in a uniform fidhg. In
spheroidal coordinate®) can be expressed as [145]

& &+1

®=EoFn[E+A(-1+5Ine—7)]. (4.1)
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whereA is a constant equal to

_ (8 B 1) fo
&S (§0) —£21(&)

The first term in Eq. 4.19g = EoF n &, is the potential of the external field and the second
part is the potential of the spheroid, i.e. the induced ahafdpe notation used in the above
expressions and the rest of this section is explained ireFall

| Variable | Description |

n,é,¢ | spheroidal coordinates

Legendre function of the second kindth order

external electric field strength, oriented along the longespid axis
spheroid boundary

half the distance between the spheroid foci

length of the semi-major spheroid axis

radius of the spheroid curvature at its apex

;uu—-ngwglg@

Table 4.1: Notation used in Eq. 4.1.

For convenience, equations transforming the spheroidaidomates to the more familiar
cylindrical coordinates are provided:

p = Fy/(1-n2)(&2-1), (4.2)
z = Fng, (4.3)

while the azimuthal angl¢ has the same meaning in both coordinate systems.

The electric fieldE outside the spheroid can be easily obtained as the negatdeegt

of the potentialkd. The final expression is rather complicated and the resulkius best
presented graphically. This has been done in Fig. 4.1 foharspd with semi-major axis
L and a curvature radius at its apex= 0.1L.

Looking at the vector field plot in Fig. 4.1, it can be easilgs¢hat the field close to the
spheroid ends looks much like a field of an extended dipolé st constituent charges
residing near the opposite end of the spheroid. This obsenvig one of the cornerstones
of the tip-sample interaction model derived later in Chapte

Fig. 4.1 provides a qualitative insight into the field confiment and enhancement of the
prolate spheroid. For a quantitative analysis, the enhmane factory = E/Eq at the
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Figure 4.1: Electric field in the vicinity of a spheroid wikh= 0.1L located in a uniform
external electric field oriented along the spheroid axis.

bottom of the spheroid can be derived from Eq.4.1. For a gatithe intersection of the
surface and the axis of the spheroid one obtains

L(e —1)(2F +RInt=E
( ) L+F>L_F +1 (4.4)
2F(L—eR)—LR(e—1)In—¢

y:

whereF is the focal distancé = /L(L — R). For convenience, Eq. 4.4 can also be rewrit-
ten in terms of relative dimensions= R/L andf = /1 —r:

e—1)(2f +rint
- (e—=1)( 7)) 1, (4.5

1 f
2f(1—er)—r(e—1)In+

The spheroid shape enters the right-hand side of Eq. 4.5thriyigh the ratia of the
spheroid curvature radiug to its half-lengthL. The field enhancementis thus com-
pletely determined by the ratioand the dielectric constatof the spheroid. The field
enhancement as a function of ande is shown in Fig. 4.2. The dielectric constanivas
thereby taken in the Drude forg(w) = £, — wp/w(w+iy) with wp = 9eV,y=0.1eV
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andé&, = 2 in order to obtain values similar to a real metal.
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Figure 4.2: (a) Field enhancementat the spheroid apex as a function of the spheroid
dielectric constant(w) = 2—9eV/w(w+ 0.1lieV) and the ratia = R/L of
the spheroid curvature radius to its half-length, fbas a function ofr for
¢’ = —100, and (c) maximum field enhancemeras a function of .

Two conclusions can be immediately drawn from Fig.4.2(aj #re line profile along

¢’ = —100 shown in Fig. 4.2(b). First, for eachthe field enhancement at the surface of
the spheroid exhibits a sharp peak which shifts towards megatives’ (lower frequencies

w) as the spheroid shape factodecreases. This is a manifestation of the small-particle
plasmon resonance, explored in more detail in Sect. 3.4rfsedigher field enhancement

y can be achieved with sharper tips (lowér This is quantified in Fig. 4.2(c) where the
maximum field enhancememptax is shown as a function of. Based on an extrapolation,

it might seem that an arbitrary large enhancement can beathby decreasing= R/L
sufficiently enough by making the spheroid very long (ldtyand thin (smalR). In prac-
tice, however, the length of the tip must be kept signifigabélow the light wavelength for
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the electrostatic approximation to be valid. Furthermthre tip radius can only be reduced
down to a few nanometers before the bulk dielectric condtanbmes inappropriate for
describing the optical properties of the material [149]r #as reason the field enhance-
ment factors in the mid-IR range are limited to about threkems of magnitude in the best
case.

Refs. [145] and [143] contain a more detailed electrodyedareatment of prolate spheroids
and a comparison with the electrostatic calculation of yipe toresented above. A good
agreement between the electrostatic and electrodynaneiglagons can be inferred from
them for spheroids shorter than rougily5. Field enhancement factors up to several hun-
dreds are indeed obtained for thin spheroids even with tlaedation effects included. In
the visible spectral range, such high field enhancementrip@ed to the small-particle
plasmon resonances. In the infrared, the lightning rodcefba its own is sufficient to
achieve the same effect.

4.2 Field Confinement

Here we consider the second important aspect of the optitahaa function: the field
confinement. Based on Fig. 4.1, the confinement can alreadgtheated to be about one
spheroid apex radiu’. For a more quantitative analysis, Fig. 4.3 shows the hot&dine
profiles extracted at the bottom of the spheroid in Fig. 4.1.

10

x/R
(a)

Figure 4.3: (a) Total field enhancement below the spheraichfFig. 4.1 and (b) its two
orthogonal componentg; (full line) andy, (dashed line).

As expected, the field enhancement in Fig. 4.3 drops to abalfiitt maximum value
already one tip radiuR far form the axis. However, the curves in Fig. 4.3 can be used
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to estimate the resolution obtainable using such a tip far-field microscopy purposes
only after the method of detection and the structure of tlmepda have been taken into
account. If the probing tip serves both to collect and toataliight, a signal enhancement
proportional to the square of the field enhancement follawmfthe optical reciprocity
principle [150, 151]. Additionally, in the case of a nondrferometric signal detection,
photodetectors measure intensity of the emitted lightppritonal to the square of the field
strength. This makes the cumulative enhancement of theteetsignal proportional tg*
when both aforementioned effects are combined. The enhaemdefactory” applies to
the signal generated by linear processes like fluorescargasiic and Raman scattering.
In the case of non-linear response associated with e.gphaten fluorescence excitation
[51] or second harmonic generation [49], the detected sgmaancement is proportional
to an even higher power of the field enhancemgniThe curve from Fig. 4.3(a) raised
to the appropriate power finally determines the point spfeadtion (PSF) of the near-
field optical microscope using a probing tip whose field ermleament is shown in Fig. 4.3.
The width of the PSF equals the optical resolution when imggamples consisting of
point-like objects, i.e. objects much smaller than the &fdius. For extended objects
whose dimensions are comparable to or larger than the tipgathe emitted signal can
be calculated as a convolution of the PSF and the object mespadl his issue will not be
pursued further since the standard FWHM resolution caters not applicable in such
cases and the results are dependent on the actual criteseon u
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Near-field Interaction

5.1 Monopole Model

5.1.1 Motivation

The efficiency of s-SNOM probes has been examined in Chaptéaded on an electro-

static model of the probing tip as a prolate spheroid, fieldamecement and confinement
have been calculated. In the context of the near-field dpticzroscopy, these two proper-

ties determine the detected signal level and attainabtdutisn, respectively. At the same
time, they provide no information about one of the most fundatal issues in s-SNOM,

the optical contrast. In order to explain and predict optemmtrasts, it is necessary to
understand the interaction between the probing tip andrwestigated sample. An ac-
curate model of the tip-sample interaction is of particuaportance to the apertureless
near-field spectroscopy since it represents the key to #ndifccation of materials based
on their spectral fingerprints.

The first attempt at describing the tip-sample interacti@s wthe point dipole model [57,
70-73], described in Sect. 2.4. This model succeedsjmaditativeexplanation of almost
all phenomena experimentally observed in s-SNOM imagimguding material contrasts
[44, 46, 64], near-field resonance [63] and its blue-shithwnicreasing probe-sample dis-
tance [61]. It is also simple enough to give a direct insigld the major determinants of
tip-sample interaction. However, the point dipole modedsinot provide a googuantita-
tive prediction of the measured signal. In particular, it fadsorrectly reproduce both the
spectral position and the magnitude of near-field resorg@seshown in Sect. 2.5.

Apart from the analytical dipole model, the tip-sample rattion has also been the ob-
ject of several numerical studies. Different computatid@ehniques have been employed,
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including finite element [152] and boundary element [75] moells, multiple multipole
method [76], multipole expansion [153] and a time-domaiprapch [154]. Numerical
modeling of the tip sample interaction, especially at tHfeamed wavelengths, is a highly
complex task. The complexity stems from the widely différiemgth scales which need
to be covered simultaneously. On one side there are thertgiHeand the illumination
wavelength, both possibly larger than 10um. On the othey, $ite system must be mod-
eled with precision better than the tip radius, usually entanometer range. The resulting
dynamic range of four orders of magnitude usually requioesescompromises to be made
before a numerical solution can be obtained. A common sfioglion is the reduction
of the problem dimensionality from three to two dimensiogsrposing the axial sym-
metry of the system. Additionally, the probes are usualtifieially truncated instead of
considering their full length and an idealized tip shapessuaed. Finally, the probing
tip vibration is rarely taken into account due to the largenpatational effort involved,
although it represents an essential aspect of the s-SNOMIgiigtection [155].

For one or more of the above reasons, no model has so far &ggureproduced the
experimentally obtained spectra [63, 66] of near-field nest samples. Such outcome also
precludes an unambiguous material identification basedeanireld vibrational spectra.
With constant improvement in the computer power and moddkchniques, it is likely
that some numerical method will eventually succeed at #gk.tHowever, unless it turns
out to be much faster than methods currently in use, it wilstrikely be too slow to
be used in the inverse way and determine the optical cossthr@t material based on the
measured near-field optical signal at each pixel in an imAgemproved analytical model
would therefore be the most important step towards the medniocal optical constants
on the nanometer scale [58]. An attempt at achieving thisiggaesented in this chapter.

5.1.2 Overview

To derive an improved model of the tip-sample near-fieldrateon, the reason for the
failure of the dipole model will be identified and subseqleobrrected. As described in
Sect. 2.4 and depicted in Fig. 2.5, the dipole model redueepriobing tip to a point dipole
located near its end. We have already seen in Fig. 4.1 th&etdearound a spheroid looks
much more like a field of an extended (i.e. finite), and not aplke dipole. At a large

distance from the spheroid, the point-like and extendedldgare hardly distinguishable.
Nevertheless, significant differences exist in the immtedvecinity of the spheroid. This



53 5.1 Monopole Model

claim is quantitatively supported by Eqg. 4.1 which yields tbllowing expression for the
electric fieldEs(D) = E(D) — Eg generated by the spheroid along its axis= 0) as a
function of the distanc® from the spheroid boundary:

26 (L+D) | |y LD
_ D%FL(2D+R LFF+D
E¢(D) = PR LT Eo. (5.1)
LR(e—1) L+F

The exact solution from Eq. 5.1 will now be compared to thelfala point dipole and an
extended dipole. The field of point dipole along the sphegoiid is given byE,q(D) =
Apd/(R+D)3. The dipole is thereby positioned in the center of curvatirére spheroid
apex, as prescribed by the dipole model (Sect. 2.4). In asttthe field of an extended
dipole consists of two monopole contributionEgq(D) = An((R+D)7?+ (2L — R+
D)~2). For short distance® from the spheroid < L) the point charge far from the
observation point can be neglected. Based on Fig. 4.1, wecetpe remaining single
monopole fieldley, = A/ (R+ D)2 to match the exact resuliis better than the dipole field
Epd.- For a meaningful comparison, the constafg andAn, are chosen so that fields of
different models assume the same value at the tip apexpitBatEq(0) = Em(0) = Es(0).
The results for the spheroid from Fig. 4.1 wiL = 0.1 are displayed in Fig.5.1.
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Figure 5.1: (a) Electric fiel&Es generated by a spheroid in homogeneous external field as
a function of the distancB from the spheroid end. Shown are the exact result
from Eq. 5.1 (dashed line), monopole fiddg, = Am(R+ D)2 (upper full line)
and dipole fieldEpg = Apd(R+ D)2 (lower full line), scaled to the valugs at
the spheroid surfacd® = 0. (b) Relative deviation of the monopole fiel},
(upper line) and dipole fiel&pq (lower line) from the true spheroid fiele.

Evidently, the monopole field is in a much better agreemetit thie exact result. The
conformity is particularly good close to the spheroid scefagiving less than 10% error
at D = R where the spheroid field has already decayed to about 20%eofalue at the
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surface. On the other hand, the point dipole field deviates fthe exact result by 50%
at D = R and more than 80% at a distance®® 4R. Such large error is certainly one
of the main reasons for the quantitative discrepancy betvilee dipole model and the
experimentally observed near-field spectra shown in Ségct. 2

At the same time, Fig. 5.1 also suggests that the probing igtnbe replaced by a point
charge (monopol&), for the purpose of modeling the near-field interaction. Tppeasite
charge € constituting the extended dipof® resides on the other end of the tip (i.e. the
model spheroid), so it can be neglected when calculatingiteeaction with the sample.

The charge€)y and Qg and the resulting dipole momepg ~ 2QoL are directly induced
by the external illumination fieldEy, which by definition makes them independent of the
near-field interaction with the investigated sample. Mat@ontrasts useful for near-field
optical microscopy stem from an additional polarizatioduoed due to the interaction
of the probe with the sample. An attempt will be made here &cdlee this additional
polarization of the probe by another extended dipmleonsisting of monopole®; and
-Q;, as illustrated in Fig.5.2(b). Of those two charges, dRjyis assumed to participate
in the near-field interaction, while the existence@f is required by the electric neutrality
of the probing tip. The exact strength and location of therittion-induced chargesQ;
shown in Fig. 5.2(b) will be determined in Sects. 5.1.4 arid%.respectively. Although
the charge®; is considered negligible in the near-field interactiors inévertheless needed
to calculate the dipole momept which contributes to the radiated EM field.

In summary, the part of the probe participating in near-fiatdraction is represented by
two point chargeQo andQ;. For this reason the entire model is perhaps best described a
the "monopole model”. Such name also stands in a clear csintréhe dipole model which

it is supposed to replace. For easier comparison of the twiefapthey are illustrated side-
by-side in Fig.5.2.

In the following, a more careful justification of the assumps behind the monopole
model is presented, together with the derivation of the esson for the interaction-
induced charg€); and the corresponding dipole momegmt

5.1.3 Spheroid in Homogeneous External Field

A nice fit of the monopole fieldE, to the exact spheroid fieles shown in Fig.5.1 is
not obtained for every spheroid’s shape. As a matter of thet,shape factor = 0.1
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Figure 5.2: Comparison of the point dipole and the monopadeh (a) In the point dipole
model, the tip is first reduced to a small sphere in a uniforctek fieldEg to
determine its polarizability. The sphere is then furthelueed to a point dipole
located in its center for calculating the interaction witle sample. (b) In the
monopole model, the tip is approximated by a spheroid in otmielectric
field Eq to obtain the field enhancement close to the tip apex. Thergjghis
then reduced to a finite dipol& which produces the same field enhancement
at the tip apex. The dipolgy consists of the monopol€3, and Qg, of which
only Qo (positioned closer to the sample surface) participatesemear-field
interaction. As the consequence of the interaction, antiadai point charge
Qi is induced close to the spheroid focus, whereas the oppdsitge €; is
distributed along the spheroid.

chosen in Fig. 5.1 turns out to be very close to the optimumezalForr = 0.01, the error
|Es — Em|/Es at D = R reaches almost 25% and further increases with the distandé
a better fit is required over a broader range of shape factdhe slope of the monopole
field outside the spheroid can be adjusted by slightly stgfthe charge location. Taking
W to be the required monopole distance from the spheroid kanynthis is accomplished

by the following function:
_ WGES(0)

Em(D) = Mo1 D)2’

(5.2)
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where the factoWWZEs(0) in the numerator ensures the correct field enhancement at the
spheroid surface. The positidt can be calculated by imposing the conditien(D1) =
Es(D1) for a particular distanc®;. The choiceD; = R seems to be a reasonable trade-
off between the field enhancement overestimate at shodeaies and the corresponding
underestimate at larger distances.

The exact solution for the charge positMg is rather complicated, but a simple approxi-
mate result can be derived with an accuracy better than 5%Ifok 0.3:

_13IRL

~ TR (5.3)

The average error of about 3% made by Eq. 5.3 is completehgitdg, especially because
there is no need for thEn(D) to intersect the true functioBs(D) exactly atb; = R. To
demonstrate the effect of the charge shift, the errors wathvathout the shift are compared
in Fig. 5.3. Two values of were selected, bounding roughly the range of practicaldpesh
factors conforming with the assumptiéh L < A for A in the mid-IR range. Owing to
the shift, the erroAE = |Es— E| has been constrained to below 4% of the maximum field

strengthEg(D = 0) in all cases.
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Figure 5.3: Approximation of the spheroid field by a monopole field,, with (full line)
and without (dashed line) a corrective charge shift. Theadien of the ap-
proximate resulEny(D) from the exact resulEg(D) is plotted, normalized to
Es(0). Two spheroid shape factors= R/L are shown: (ay = 0.2 and (b)
r =0.01.

As seen in Fig. 5.3, even without shifting the cha@g the error|[Es(D) — Em(D)|/Es(0)
remains well within 10% oEg(0). This error turns out to be relatively small compared to
the approximations which will be made in subsequent sestidhe shift of th&)y position

may thus be regarded as an optional correction.
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In conclusion, the field of a point charge successfully rdpoes the field of a spheroid
over short distancd3 < L and for spheroids with shape factor®0<r < 0.2, relevant for
modeling the s-SNOM experiments. In the absence of the sgith$ permits the entire tip
under an external illumination with > L to be reduced to a single point chai@e This
approximation works well as long as the distazé the sample remains within several
tip radii R, which is sufficient to cover the typical tip-sample distesiin the apertureless
near-field optical microscopy.

Finally, the value of)g can be obtained by comparing Eq. 5.2 to the general expre&sio
a monopole field in cgs unitEm = Q/R?, from which Qg = WZEs(0) follows. With the
relation

Es(0) =E(0) —Eo = (v — 1) Eo, (5.4)

Qo can also be expressed as
Qo =W (w— 1) Eo, (5.5)

wherey, = E(0)/Ep is the field enhancement at the pofatp) = (L,0), i.e. on the inter-
section of the spheroid axis with the spheroid surface. Higevofy, can be derived by

settingD =0in Eq.5.1:
2F L—F
R HINgE

Yo= JFILeR | LF +1 (5.6)
[Re-1) NLFF
ForR< L, Egs. 5.6 and 5.3 simplify to
2L R
=+ing
_ R ar
Yo = PR | L F +1, and (5.7)
LR(e—1) L+F
W = 1.31R (5.8)

respectively. Further simplifications of the denominatoEQ. 5.7 are not possible without
producing large errors i@ for some possible values ef

5.1.4 Spheroid in External Monopole Field

The next topic to be considered is the influence of the tip ersmple. As with the dipole
model (Sect. 2.4), the method of images can be employed.elfiphis represented by a
point chargeQ at a distanced abovethe surface, the sample response is equivalent to
a point chargeQ, = —Qo at the same distandd belowthe surface (Fig.5.2(b)). The
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"reflection factor” is known from electrostatics to be related to the dielecoestant of
the sample ag = (&s—1)/(&s+1). A proof that the electrostatic concept of the mirror
image can be successfully applied over very short distaenes with fields oscillating at
optical frequencies is presented in Sect. 5.2 .

The response of the probing tip to the mirror cha@jg= —BQo induced in the sample
should be determined next. It is thereby particularly inbt@ot to find out whether this
response looks like the induction of another point chapgelose to the tip apex. This
would justify one of the basic assumptions of the monopoldehsketched in Fig. 5.2.

Before attacking the more complex problem of a spheroidemtionopole field, a simpler
case of a grounded conducting sphere will be presented timdunction. To this end, let
us recall that the entire surface of any grounded perfecitglacting object always resides
on the zero potential. The same obviously applies to ourrgpimethe presence of an
external point charg®.. From standard textbooks it is known that the charge digioh
on the surface of the sphere in this case produces an eléetdequivalent to that of a
certain point charg®; within the sphere [156]. The exact relation between the tharges
is Qi = Qez /R, with R being the sphere radius amd—= Rz/ze the distance of the fictive
"internal” point chargeQ; from the center of the sphere. The external ch&ges located
at a distance, form the sphere center (Fig. 5.4(a)).

If the sphere is deformed along one axis to become a prol&grail, its response to the
external charg&)e is no more equivalent to point charge. It has been shown that its
response is instead equivalent to a certimi@ charge distribution along the line connecting
the two spheroid foci[157]. This situation is illustratedrig. 5.4(b).

The hypothesis that the spheroid in the field of a point chaegebe replaced by another
point charge will now be examined utilizing results from §1and [159]. These two refer-

ences provide semi-analytical solutions to the problemgrbanded perfectly conducting
spheroid in the presence of a point charge. To make use o tessilts, from this point

on the derivation of the monopole model has to be restricigrbtfectly conducting probe

materials, too. On the other hand, the transition from gdewaito isolated spheroids will

be made before the final result is derived.

The distribution of line charge (z) required to maintain the surface of a grounded spheroid
at zero potential in the presence on an external point ch@gge given by the following
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@) (b) (c)

Figure 5.4: (a) Electric potential outside a grounded mfeconductingspherein the
presence of an external char@g is equivalent to the potential obtained by
replacing the sphere by a point char@e (b) Electric potential outside a
grounded perfectly conductirgpheroidin the presence of an external charge
Qe is equivalent to the potential of a certain non-uniform lotearge distri-
butionq; (cf. Fig.5.5). (c) For short distances between the sphaniithe
external charge, convergence problems are encountered. m¥while cal-
culating the line charge;. The problems can be avoided by separating the
equivalent charge into the point charge contribufigyand a reduced amount
of line chargeyc.

series[158]:

2 %
_%Fz%n;(gw1>$n<<ngi/F;)Pn<L/F>pn<z/p>. 5.9)

The notation from Table 4.1 has been employed here with tiigiad of two new symbols:

4(2) =

the unit step functior® and the Legendre polynomialk. As indicated in Fig. 5.4, the
origin of thez-coordinate in Eq. 5.9 is set to the spheroid center.

Three examples are given in Fig. 5.5 showing the (fictived tharge distribution along the
spheroid axis calculated using Eg. 5.9.

The convergence speed of the series in Eq. 5.9 can be eslifmate Fig. 5.5 by observing
the difference between the calculation witk= 6 and withn = 12 terms in the sum from
Eqg.5.9. For large distancdd, Fig.5.5(a) reveals a rapid convergence, which becomes
slower as the distande is reduced in Fig.5.5(b) and (c). For thin spheroigs< L),

Eqg. 5.9 exhibits serious convergence problems with extetrarge distances below about
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Figure 5.5: Line charge distributio) induced along the axis of an= 0.1 spheroid as

calculated from the first 6 terms (dashed line) and 12 teroidifie) in Eq. 5.9.
The external point charge is located at: a3 4r, (b) D = 2r, and (c)D =rr.

D = 3R/2. For such distances, an alternative approach has beeestadgn [158]. It

involves the separation of the induced chaggato a point charg€). and a reduced line
charge distributiom|c. This model is illustrated in Fig. 5.4(c). The point chargenponent

Qc in the alternative approach is located at

5o — (L+D)(A+T) _(Zl\irr(;“ P (5.10)

measured from the spheroid center. It is easy to showztHegs between the focus= F

and the spheroid boundazy= L. This can also be seen in Fig. 5.6, where the posiios
plotted together with the amount of charge at this positidre amount of remaining linear
charge is also shown in Fig.5.6(b) and demonstrates howntthéced charge gradually
changes it character from a point-like to line charge distion. Its mean position also
simultaneously shifts away from the spheroid end towardsfheroid center.

0 025 05 075 1 125 15
D/R

(a)

Figure 5.6: (a) Positioz; of the induced point charge component according to Eq.5.10.
(b) Partition of the total induced char@® (thin full line) into the point charge
componen). (thick full line) and line charge componegy (dashed line). All
guantities are calculated for a spheroid with 0.1.
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In conclusion, the charge induced in the spheroid only rouggsembles a point charge.
Moreover, it changes both its position and its distributt@pending on distance of the
external charge. However, for short separatibnigsetween the spheroid and the external
chargeQe, the induced charge does indeed remain concentrated wahghly one cur-
vature radiusk from the spheroid end. Consulting the figures 5.5 and 5.6hage see
that, on average, the highest charge concentration seebesa@mund the spheroid focus
(z=F). Since for simplicity only one fixed position of the induceldargeQ; is allowed

in the monopole model (Fig.5.23—= F seems to be the best choice for this position. For
R < L, the position of the focus is given lzy= F ~ L — R/2, measured from the spheroid
center, oMM ~ R/2 from the spheroid end.

It should be emphasized once more that the reduction of ehadyced in the spheroid by
an external point charg®e to another point charg®; at fixed location inside the spheroid
is a crude approximation. Its use is motivated exclusivglyhe huge simplification of the

final solution it enables.

5.1.5 Amount of Induced Charge

To complete the approximation of the spheroid response &xtarnal point charg®e by
another monopol®;, the value of); remains to be determined. This can be done by noting
that Legendre polynomialR,(z/F) encountered in Eq. 5.9 are oscillatory and integrate to
zero on the intervgl-1, 1] for all n exceptn = 0. This means that only the first term= 0)

in the sum in Eq. 5.9 determines the total charge on the sputjgb®] and all subsequent
terms just redistribute it along the spheroid axis. SiRg&) = 1, the net charg€; induced

on a grounded perfectly conducting spheroid in the field ofxernal point charg€e is
determined by Legendre functior4, in Eq. 5.9:

_%((L+D)/F) InEER
Qt - —Qe XO( L/F) - —Qe@- (5-11)

As seen in Fig. 5.5, not all of the char@egis concentrated close to the spheroid end. Since
only the charge found in the proximity of the sample is coesed relevant for the near-
field interaction in the monopole model, the induced mone@plcan be assigned only a
fraction of the total induced charg@. An estimate of its value should be made bearing
in mind that for describing the probe-sample interactidre mirror imageQ, = —BQ;

of the monopoleQ; assumes the role of the external cha@@e If the probing tip is in
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contact with the sample surface, only the charge densityammmediate neighborhood of
the contact area is important for the interaction. Moving tip away from the surface, a
larger portion of its mirror image has to be considered fomecurate description of the
electric field at the position d@;. Following this rationale, Fig. 5.7 shows the fraction of
@ located within the distancAz = R+ D from the spheroid end, calculated according
to the model in [158]. Curves in Fig.5.7 exhibit a similar beior for various spheroid
shapes. Moreover, they can be considered constant to gojmsiamation for distanceld
larger tharDpin =W = R/2, the smallest distance permitted by the model. A reasenabl
estimate for this constant based on Fig. 5.7 seems to bedgur0.7+0.1. This value
will be used as the starting point for further refinement.

Figure 5.7: Fraction of the total induced chaf@efound within the rang&+ D from the
tip end. Three different shape factor are shown= 0.2 (full line), r = 0.1
(dashed) and = 0.05 (dotted). The shaded part of the plot fr@m=0toD =
0.5R denotes external charge distances which do not appear inahepole
model.

One important refinement is the transition from a groundéeésypd considered so far to an
isolated spheroid of the monopole model shown in Fig. 5.2eN\the chargé); is induced

in a grounded spheroid, the surplus cha@eis assumed to flow out of the spheroid. Since
the surplus charge cannot leaveisolatedspheroid, it must distribute in such a way that
the entire surface of the spheroid still remains at the saotengtial. This requirement is
satisfied by an ellipsoid if every slice of thicknesacontains an equal amount of charge
AQ = —Q;Az/2L [160]. This means the charg€:-is uniformly spread over the length of
an isolated spheroid, and some of it resides within the rAzgeR+ D considered relevant
for the near-field interaction in Fig. 5.7(b). To accountttus charge, the factay derived
above has to be decreasedjte- g— (R+ D) /2L. With this correction, the strength of the
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induced monopol&); is equal to

R+D In L—L—F—O—D
Q=gQ=—(g-—F5)Q mLti_ED' (5.12)

Since the approximatioR < L has been introduced already in Sect. 5.1.3, we can expand
F =+vL—RasF =L—R/2. Thisway Eq.5.12 becomes

2L—R/2+D
~R+D  INHpp

R/2
NeglectingR/2 andD in comparison to R, Eq. 5.14 is finally obtained:
R+D. _ Ingiss
i~ —(g— . 14

5.1.6 Near-field Interaction

Eq.5.14 represents the final form of the expressionQor To evaluate it, the external
chargeQg in Eq. 5.14 and its distand@ have to be specified now. In this regard, it should
be noted that there actually existo parts of the induced chargg; shown in Fig.5.2
and again in Fig. 5.8 with more details. For the first p@tp, the external charg€e is
the mirror imageQ,, of the chargeQp induced by the illumination field. For the second
part, Q 1, the external charg€e is the mirror imageQ; of the monopole); itself. The
corresponding distanc&y andD, are easy to derive from Fig. 5.8:

Do = 2H+W,, and
D; = 2H+W, (5.15)

whereH denotes the distance between the probing tip and the sampbres and the
positionW of the monopol&)g is given by Eqg. 5.3.

Inserting Egs. 5.15 into Eq. 5.14, the following relatioesbeen the image charg@g and
Q and the monopole®; g andQ; 1 they induce in the probe are obtained:

|n¢
Qo = foQy = —(g— 2 TWOHR) AR oy g

aL
2L In%
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Figure 5.8: Charges participating in the near-field inteoscbetween the probe and the
sample, together with their positions according to the npa@model.
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Q1 =— fQ1= —(g Q. (5.16)

The induced charged; o andQ; 1 should finally be added together to obtain the monopole
Qi
Q=Qio+Qis, (5.17)

which measures the strength of the near-field interactibmden the probe and the sample.

Since the image charg€¥, andQ/ can be expressed as

Q% = —BQo and
Q = -BQi; (5.18)

and the monopol€); comprisesQ; 1 which is proportional to the mirror image &; it-
self, we have obtained a recursive definition €t Such a situation has been already
encountered with the dipole model in Sect. 2.4, so the sampmagph of searching for a
self-consistent solution can be utilized here. That way#iae ofQ; is obtained by solv-
ing the equation

Qi =B (foQo+ f1Qi). (5.19)
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The solution of Eq. 5.19 is the near-field-interaction-ioeldicharg€); referred to in Fig. 5.2.

B fo

MR 2

Qo- (5.20)

Beside the charg®;, the electric neutrality requires the existence of the sipeharge®,
somewhere on the spheroid. The dipole monggmtf the charge distribution generated by
Qi and Q; oscillates with the driving field frequency and thus radsdight. To determine
the dipole momenp;, we recall the fact that the only distribution of char@® which does
not break the equipotential property of the spheroid serfathe uniform distribution over
the spheroid length. The symmetry of this distributionwaBaus to effectively replace it a
single charge@; located in the spheroid middle since the dipole moment esalinn the
charge position. The average distance betw@eand Q; is thenL — R/2 ~ L, and the
resulting dipole momeng; equals

B fo

pi:Qiinl_Bfl

QolL. (5.21)

The dipole momenp; emits radiation which can be taken as the measure of the near-
field interaction between the probe and the sample. In andit p;, there is also the
dipole momentpg = 2QpL which depends on the size and shape of the probe and on the
illumination field strength, but is completely independehthe sample and its properties.
This allows a dimensionless "near-field contrast factor= p;/po to be defined as an
illumination-independent measure of the s-SNOM signamgarable between different
samples and different measurements:

1
Ppo 21-Bf;

(5.22)

Insertingfp and f; from Eqgs. 5.16 into Eq. 5.22 and settWy= R/2, we obtain

B(2Lg—2H —Wo—R) In 75— 5.29

L T 4LIn% —B(4Lg—4H —3R) In A

Eq. 5.23 can be written in a simpler form by noting that alig#érs scale with the spheroid
half-lengthL. Substitutingh, r, andw respectively forH /L, R/L, andW/L, EqQ.5.23

becomes
_ B(2g9—-2h—w—r)In(h4+w/2+r/4)
~ 41In(r/4)—B(4g—4h—3r)In(h+r/2)

n (5.24)
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The parametew in Eq.5.24 is the position of the initial monopo@. It can be taken
to be equal tov = r for simplicity. Alternatively, a slightly more accuratelua can be
determined with the aid of Eq. 5.8, yielding

Wo  131r

L 1+2r°

(5.25)

5.1.7 Effective Polarizability

The overall dipole momemnes of the charge distribution in the probe can be constructed
by adding the contributions from the dipgbg induced by the external field and the dipole
pi induced by the near-field interaction:

Peff = Po+ Pi =2QoL (1+n). (5.26)

The value ofQ required for calculatingef is provided by Eq.5.5Q0 = Wg (yo—1) Eo.
In the limit of a perfectly conducting spheroighfope— —0), the field enhancement factor
yo from Eq. 5.7 simplifies to

2L/R+In R
= # 11, (5.27)
In@
or, equivalently: . o
+rin-=
er

Finally, insertingQp from Eq.5.5 into Eq.5.26, the effective polarizabilityss of the
spheroid interacting with the sample is easily obtained:

aeﬁ=%=2(yo—1)WZL3(l+n) (5.29)

Together with Egs. 5.28, 5.25 and 5.24 which determine thaafiiesyy, wandn, Eq. 5.29
represents the complete expression for calculating tiaévelstrength of the s-SNOM sig-
nal based on the monopole model. It can be directly comparéeteffective polarizability
obtained from the point dipole model, Eq. 2.10. Since thderno the monopole model is
assigned the polarizability of a prolate spheroid of lerithit obviously provides a much
better approximation to the real probes than the dipole iiadehich the probe assumes
the polarizability of a small sphere of radiBRsR < L.
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Still, the model spheroid length is constrained ko2 A due to the electrostatic treatment
of the problem. On the other hand, standard s-SNOM (AFM) imgphips usually have
lengths of about 10um or more, which is comparable to or grehtanA for mid-IR
and shorter illumination wavelengths. For this reasongaitant discrepancy between
the polarizability of real probes and a small spheroid toolHtq. 5.29 applies should be
expected. This problem will be addressed in Chapter 6.

Although the entire probing tip can radiate light, the lageart of a real probe is too far
from the sample to give a significant contribution to the Hesdd interaction. The length
2L considered in the electrostatic model should thereforeigem satisfactory description
of the near-field interaction. This permits the contrastdag in the form of Eq.5.24 to

be used for prediction of true near-field optical contrasts- ENOM experiments.

Technically, the near-field part of the polarizabiltty related to the dipole momept and
the contrast facton is extracted from the overall emitted signal by the highamfonic
demodulation method described in Sect. 2.3. This methoprespes the detection of light
scattered due to the interaction-independent dipole mopealso known as the s-SNOM
background signal. A detailed analysis of this issue isgres] in Chapter 6.

5.1.8 Parameters of Monopole Model

Eq.5.23 contains all parameters which determine the nelar-diptical contrast between
two materials within the monopole model framework. Eachapsater was described at
the point where it was introduced, but an overview of theiameg and permissible values
is presented here for convenience.

The first quantity found in Eq.5.23 is the electrostatic ‘@eflon coefficient’3, defined
asf = (&—1)/(&+1), wheregs is the complex dielectric constant of the sample. The
quantityH stands for the probe-sample separation, i.e. the heighegbrtobing tip above
the sample.R is the radius of the spheroid apex curvature which can bearsgtgrom

an electron micrograph of the probing tip or from the toppdia resolution it provides.
For commercial probes, the radi&&scan also be found in data sheets provided by the
manufacturers. According to the assumptions of the moaéh i andR have to be much
smaller tharl, the length of the major semi-axis of the spheroid représgithe probe.

The total length of the spheroidl(Ris equal to the probe length if the latter is much shorter
than the wavelength. This condition is usually not satisfied in practice and thegta L
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has to be determined by other means. Thereby the consttait 2 has to be observed,
since otherwise the field enhancement, and consequenilytdraction strength, would be
overestimated. In Sect. 54 will be determined as a free parameter determined suchtthat i
provides the best fit to the available experimental resuUlidike an ordinary fit parameter,

it is not readjusted to each experimental data set separBather, its value is determined
only once and used unchanged in all subsequent calculations

Finally, the least precisely defined parameter is the fagtoglated to the proportion of the
total induced charg@, that is relevant for the near-field interaction. In a simglpra@ach
used here, it was replaced by a constant estimated to alfat00lL based on Fig. 5.7(b). In
practice, some corrections can also be incorporated iettatitorg on a phenomenological
basis, such as the effect of using a probe with finite condititinstead of a perfectly
conducting spheroid. Further corrections may also incthéeradiation resistance which
has been neglected so far. Given that the near-field cougliegsentially capacitive in its
nature, the electric resistance due to finite conductivity tine radiation resistance cause
a slight phase difference between the driving field and teparse of the probe. This
phase difference may be accounted for by using a complexrfgetith a small imaginary
component, as will be done in Sect. 5.4.

At this point it is still an open question how sensitive are tiesults obtained by the
monopole model to the variation of its parameters. Due ta@tmplex interplay between
the parameters, the relative impact of each parameter dinddgesult depends to a large
degree on the values of all other parameters and on the tlielemction of the sample.
For this reason no simple answer can be provided here, lsustie remains an important
topic to study in future publications.

5.1.9 Possible Improvements

To conclude, a new model for describing the interaction ofSN©M probing tip with
the investigated sample has been derived in this sectioe. filkl expression, Eq.5.29,
is somewhat more complicated than the corresponding esipresn the dipole model
(Eq. 2.10), but it still represents a completely analytdaked form solution. A detailed
derivation of Eq.5.29 was presented here to give the justiin for assumptions of the
model and to indicate directions for possible future imgments. Among them, the pro-
vision for varying the position of the monopa@ with the probe-sample distance would
probably make the biggest difference. Another possibleravgment would be to repre-
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sent the interacting part of the probe by several monop@ie€), which would provide
a better match to the line charge distribution of Eq. 5.9.shtension would also enable
the proper treatment of the uniformly distributed surplbarge €;, which is expected
to give the interaction a slightly dipolar character. Frdecgodynamic calculations, the
effective probe lengtih. could be derived without resorting to a fit to experimentahda
Finally, a significant advancement would be made by extenthie model to dielectric
probes based on Refs. [161] and [162], thereby enablingrédigiion of signal obtained
using polariton-resonant probes.

5.2 Mirror Image Radiation

The expressions 2.10 and 5.29 describing the near-fieldagtien account for the pres-
ence of the sample only through its influence on the proberigatéon. However, the
probe induces an oscillating charge distribution in the@arwhich obviously emits some
radiation as well. It was thus proposed in the original forfnthe dipole model (Eg. 2.15)
to treat the mirror dipolg3 p the same way as the tip dipofe Such an approach was
consistently avoided in this work based on the followinguangnt against the equivalence
of the two dipoles for emitting radiation: while the tip dipop is assumed to be a real
dipole, its mirror imagey’ = Bpis just a fictive construct to describe the field distribution
above the sample surface in thkectrostatic limit Consequently, the rapidly evanescent
fields are properly accounted for by such a construct, buptbpagating waves are not
since they reflect from the sample with a different reflectoefficient which also varies
with the angle of incidence. Therefore, the electrostafitanimagep’ cannot be used to
calculate the intensity of waves radiated from the sampfase.

The same conclusion can be reached on the energy consarbascs. Namely|| > 1

for all materials with negative dielectric constanfor more precisely, the real part of it,
¢’ =re(g)). This implies that upon reflection of the wave from the sarglirface, more
energy would be re-emitted than received in the first placestituting a violation of the
energy conservation principle. On the other hand, the teflecoefficient|3| > 1 does
not contradict the energy conservation when applied tothaascent waves because they
do not transport energy away from the source.

The correct way to treat the radiation reflected by the sampl@ow be deduced building
on the Fourier optics approach from Sect. 4. Just like angrdtéld, the field of a (point-
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like or extended) dipole can be expanded into plane waves. eléctrostatic "reflection
coefficient”8 = (&s—1)/(&+ 1), EQ. 3.1, is expected to apply only to waves not signifi-
cantly affected by the retardation. These can only be thielyigpnfined, i.e. evanescent
components, not detectable in the far field. From this raagahfollows that the reflec-
tion coefficient of propagating waves must differ from thi¢wanescent waves, and it may
also never exceed unity.

5.2.1 Propagating vs. Evanescent Waves

The difference in the reflection coefficient of waves propeggafrom the probe towards
the detector and those mediating the near-field interagtibine now determined quanti-
tatively. For this purpose, let us first consider a plane waitle the free-space wave vector
Ko. Let the wave intersect the sample surface, ané jete the projection okg onto the
surface. The component of the wave vedtgperpendicular to the surface is then given by
k; =, /k% — k[%. Itis important to note that the same relation holds evég if ko[163]. In
that case; is imaginary, and the wave is evanescent. Provided the gagpbn-magnetic
(1 = 1), the wave has a wave vectgr= ,/&k in the half-space below the sample surface.
For the transverse magnetic (TM, or "p”) polarization of thave the reflection from the
surface is determined by the following relation, valid bfithreal and complek,[163]:

o gk — K,
P ek + K,

(5.30)

In analogy tok,, the z-component dk;, is equal tok, = \/kgz— kf, = \/eskg— k[%. The
continuity of the EM field component parallel to the surfasswuaes thak, is equal above
and below the surface.

For the transverse electric (TE, or "s”) polarization, deafiént reflection coefficient is ob-
tained [163]. However, this result will not be needed for giesent analysis because a
dipole oscillating perpendicular to the surface emits a§-polarized waves. The domi-
nant polarization of an elongated optical antenna perpefatito the surface is also TM.

By expandingk; andk; in Eq. 5.30 and substitutinig, = k ko, we finally obtain

_&sV1—K2—\/g5— K2
esVI— K2+ \/es— K2

(5.31)

Mp(K)
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There are two limiting cases in Eq.5.31 worth attention. ket 0O we obtainrp(0) =
(v&—1)/(\/&+ 1), the well known Fresnel reflection coefficient for normalhgident
waves. Even fok # 0 we can be certain thaty| < 1 as long agk| < 1 since,/&s=n
is nothing but the index of refraction whose real part is nevgative (unlesg < 0, but
materials withu # 1 were explicitly excluded here). On the other side, leting> « we
getrp — (&s—1)/(&s+1) = B, the electrostatic reflection coefficient. It was alreadiedo
that|B| > 1 fore’ <O.

To summarize, we have seen that the reflection coeffigigreissumes different values
for waves with different spatial frequencigs Only waves characterized by < 1, i.e.
Ko < ko propagate and can be detected in the far field. To those wtheglectrostatic
reflection coefficienf3 does not apply becausg approacheg only in the limitk — oo.
As a consequencé, can be employed for calculating the influence of the samplthen
near-field interaction, but not for radiation of waves intedf space.

5.2.2 Reflection of Evanescent Waves

Althoughr only tends to for k, — oo, in both the dipole and the monopole model it
is assumed that all waves reflect with the same coeffiggeneegardless of their spatial
frequency. Since all waves have finite spatial frequendy,ishobviously just an approxi-
mation. Fig. 5.9 can be used as a starting point to estimatertior made in Egs. 2.5 and
5.18 by applying the same reflection facfdrto all plane waves (evanescent or not). It
shows the magnitude of the Fresnel coefficignover a large range of spatial frequencies
covering both propagating and evanescent waves. The ligiiks— 0) = (n—1)/(n+1)
andrp(k — ) = (&s—1)/(&s+ 1) = B are clearly observable in Fig. 5.9.

Of particular interest here is the range of evanescent waes®ksk > ko for whichrp(k) ~

B. From Fig. 5.9 we can conclude this approximation is in facedent fork > 3. This
value should be compared to the actual spectrum of plane saawestituting the field
close to the probe. If it is found that the major part of thectfzé density is contained in
the components witlk > 3, the approximation that all waves reflect with the fagtais
justified.

Waves with largeik decay exponentially faster, so the distance between theepaad
the plane of observation must be carefully chosen to obtaammgful results. In typical
experimental conditions, the probing tip vibrates abowesample with an amplitude ap-
proximately equal to the tip radil® This makes the average probe-sample distance equal
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Figure 5.9: Magnitude of the Fresnel reflection coefficigyas a function of wave vector
K = ko /ko calculated for a Si surface & 12+ 0.1i, full line) and a SiC surface
at about 1um (¢ = —4+0.3i, dashed line).

to R, and the average distance between the probe and its mirageins R. This is a very
short distance compared to the probe lendthehd the assumptidR< L of the monopole
model is satisfied. In Sect. 5.1.3 it was shown that in thig ¢las field of the spheroid can
be approximated by a field of point charge located on the spdheuxis at the distancR
from the spheroid boundary. In the plane- 3R measured from the charge position, the
full width Ap of the resulting monopole field distribution is equal&p = 6R at its half
maximum. Invoking the relatiodk, Ap > 271, we getAk, > 211/6Ror Ak > A /6R.

With the probe radiu® = 25nm, and the wavelength = 3um on the lower end of the
mid-IR range we obtailAk = 20. This is significantly larger than the thresha&ld= 3
derived from Fig.5.9. The error made in Eqgs. 5.18 where thegencharge€y, and Q'
were equated tg3Qp and £Q is therefore negligible throughout the mid-IR wavelength
range this thesis is focused on.

On the other side}d = 0.6 um from the visible wavelength range yields a much loweneal
of only Ak = 4 with the same probe radi&= 25nm. Obviously, Egs. 5.18 become rather
crude approximations with the visible light. A more detdilavestigation of this issue is
beyond the scope of this thesis, but it would generally havsettaken into account for a
quantitative prediction of the s-SNOM signal at visible eanIR wavelengths.

5.2.3 Reflection of Propagating Waves

The attention will now be transferred from the evanescefd fidhich mediates the near-
field interaction to the propagating field which enables tbartield interaction to be de-
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tected and measured in the far field. The reflection of wavepawating towards the
detector should be accounted for using the reflection ceaftic, from Eq.5.31 with an
appropriate choice of (k < 1) depending on the angle of observation. For a plane wave
with declinationf from the surface normak{axis),k is given by

K = Kp/ko = sin@. (5.32)

If the sampleisilluminated along the same path the scattagiet is detected, the reflection
coefficient of the incoming and emitted waves is the same.nQwo two reflections, the
field scattered by the probe is then effectively increased Ector (1 -+ crp(k))? where
the complex coefficient accounts for the possible path difference between thetdiret
reflected radiation.

The situation may become more complex if an asymmetry betwlee illumination and
collection paths exists. Two different reflection coeffit&r , might then be required. Ad-
ditionally, if the illumination and collection are perfoed via an objective with a large
numerical apertureNa), the plane-wave approximation might become inadequatpat-
ticular, the contribution of the direct and reflected wavewdt be weighted differently and

a proper integration over all angles covered by the objectiight be required as well.

An important consequence of the factdr+ crp(k))?

can be demonstrated by setting
k =1 (6 =90, grazing incidence) in Eq.5.31. We obtain= —1, implying that the
signal level is significantly reduced for illumination andservation under large angles
6. However, it would not be correct to conclude that oppostieegne @ ~ 0, normal
incidence) is preferable. The radiation pattern of a diosiented along the z-axis has a
minimum (zero) along the same axi £ 0). Invoking the reciprocity principle, the same
factor should be applied to the absorption and to the enrigsioadiation, adding a factor
k2 = sir? @ to the scattered field. The combined effect bft crp)?k? factor withc = 1

is plotted in Fig.5.10, clearly showing that angles clos¢hi surface normalg < 10)

should be avoided because of poor detection efficiency.

According to Fig. 5.10, incidence anglébetween about 30° and 70° should be chosen for
optimal measurement conditions. The (soft) upper limitladat 70° is suggested not only
because of the reduced detection efficiency on some matelnial also because of large
differences in signal strength due to far-field reflectioafioientr, which might obscure
the near-field effects.

It should be noted that due to the way they were derived, thalteeform Fig. 5.10 apply
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Figure 5.10: Factof1+r,(6))?sin6? as a function of the normal angle of incidere-
arcsin(k), calculated for a silicon surface (full line) and a gold sed (dashed
line).

only to a small dipole-like probe with length< A perpendicular to the sample surface.
If the probe is inclined from the surface normal, the rangpreferred incidence anglés
extends more towards the normal inciden6e=(0). Probes with lengths larger than the
wavelength Il > A) may exhibit several radiation lobes with maxima occurrhgser to
the surface normal [164], thereby also making smaller ieread angle$ acceptable.

5.2.4 Scattering coefficient

The results derived in Sect.5.2.3 call for an extension ¢oeffiective polarizabilityoes
from EQ.5.29 in order to include the contribution of the refilen from the sample to
the radiated field. Two corrections are required: the illation fieldEg is increased by
a factor 1+ crp, and the mirror dipole momer,, = Crppest adds to the field directly
scattered by the probe. These two effects do not directlyifymtite effective polarizability
Oeff, but they do influence the scattered field. For this reasonwlhiébe assigned to the
scattering contrast = sé?, defined in Sect. 2.4 as

o = Es/Eo, (5.33)

i.e. as the ratio of the scattered to the incident field stigrigpth measured at some fixed
point in space. According to its definitioa, must be proportional to the total illumination
field Eg(1+crp) and to the probe dipole momepds to which its mirror imagep« should
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be added:

0 = fo(l4crp)?des
= fo(14crp)?(yo— WP L3(14n). (5.34)

The reflection factor, = rp(k) is defined by Eq.5.31, and its arguments equal to

Kk = sinf@ where0 is the normal angle of light incidence on the sample. Thefuerfitc
accounts for the difference between the waves directlylenion (emitted from) the probe
and those reflected from the sample. Assuming plane wavsiilation, the coefficient
should contain only the phase retardatiom¥gy—= Lky cosB, i.e.c = exp(—iA¢). Finally,

fo Is a proportionality constant dependent on the exact exyserial parameters, including
the observation point, illumination and detection angléhwespect to the probe axis, and
numerical aperture of the focusing objective. Its exaat@# not important since it cancels
when the relative contrasts /og of two materials A and B are calculated.

It is important to note that there are two completely différleength scales involved in
Eq. 5.34 over which the optical constants of the specimenldize considered. The first
of them is related to the reflection fact®rcontained in the near-field contrag(Eq. 5.24).
The area of the sample surface relevanias determined by field confinement below the
probing tip. From Chapter4 and Sect.5.2.2 it follows tha&t tbnfinement is always on
the scale of the tip radiug, although its precise extent depends on the sample diskance
from the probing tip.

On the other hand, for the reflection factor of propagatingese{), the entire area of
the sample in focus should in principle be considered. Enghe best case, the smallest
possible diameter of this area is still on the wavelendthgcale. For this reason, the
diffraction effects due to large structures present on #mee surface can be observed in
s-SNOM images. This issue complicates the interpretati@a@NOM images and should
be considered in quantitative analyses of experimentaltses

As an illustrative example, the scattering signal measardgrat the boundary of two large
surfaces with different dielectric constaggsandeg is presented in Fig. 5.11. Crossing the
boundary A-B by a distance small compared to the probingtigth, the material directly
below the tip changes, but, to a first approximation, therilhation of the probe remains
constant. Consequent|, should be calculated using different valuesgin the regions
A and B, whereas, should be calculated with roughly the same valuegih points 1
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(©)

Figure 5.11: Choosing the far-field reflection coefficiggt(a) Probe close to the material
boundary, illumination from side Irp 1 =~ rp2 =~ rpa, (b) probe close to the
material boundary, illumination from side By 1 ~ rp» ~ rpg, and (c) probe
far from the material boundaryrpy = rpa, rp2 = rps. For simplicity, the
diffraction of light by the probe and the material boundaag lbeen ignored.

and 2 shown in Fig.5.11 (a). The correct value pthereby depends on the illumination
direction, as illustrated in Fig. 5.11 (a) and (b). On theeotiand, at distances large from
the material boundary compared to the probing tip lengtth Boandr, assume different
values at points 1 and 2 in Fig. 5.11(c) since they should bmileded usingsa in case

1 andeg in case 2. Finally, for the intermediate distances compartibthe tip length,
oscillations in the recorded signal are expected as a capsegq of the light diffraction on
the boundary between the two surfaces (cf. e.g. Fig. 6.266])1

5.3 Anisotropy

So far it has been assumed that all materials are isotropichiat light propagates through
each material with a speed independent of polarization angagation direction. In
practice, many materials interesting from the fundamemtaéchnical point of view are
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anisotropic. This includes SiC, the material known to ektamear-field resonance in the
mid-IR, and also used as a model material throughout thggh&he effects of anisotropy
thus require a brief consideration here.

In general, anisotropy makes theoretical predictions efrthar-field interaction of a s-
SNOM probe with the material considerably more difficult. réduce the complexity, the
analysis will be confined to uniaxial crystals, i.e. crystafith the property that electric
field oscillations along two of the three orthogonal axes @raracterized by the same
dielectric function, whereas the dielectric function aahe third axis (the crystallographic
c-axi9 has a different value.

The Fresnel reflection coefficient of p-polarized wavesgivg Eq. 5.31 does not correctly
describe the reflection from anisotropic crystals. For axiai crystal cut perpendicular to
the c-axis, the reflection coefficient should be modified devis[166]:

\/eLeH(l— K2) — \/EH — K2
rpyj_: s (535)
\/EJ_EH(].—KZ) + \/EH — K2

wheree | andg are the dielectric constants perpendicular an parallél¢etaxis, respec-

tively, andk = ky /Ko is the ratio of the spatial frequenéy in the sample surface plane to
the wave vectokg = w/c of a plane wave. If the crystal is cut parallel to its c-axig &me
c-axis lies in the plane of incidence, the reflection facsagiven by

£ &(1-k2)— /e, —K?

= . (5.36)

o=
Pl
\/ELE(1—K2) 4+ /€L — K2

In the quasi-electrostatic limik — oo, bothrp, | andr, | tend to the same value

EJ_EH -1

= ,/élEH-i-l'

If a crystal is cut perpendicular to c-axis, the reflectioectda 8 from Eq. 5.37 applies to all

(5.37)

electric field polarization directions in the sample suefatane. For a crystal cut parallel
to the c-axis, such as the sample whose spectra are showatirb3ethe reflection factor
depends on the direction of electric field oscillationstreéato the c-axis. In particular, the
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waves with the electric field perpendicular to the c-axistflvith the factor

_SL—].
_EL‘F]-’

BL (5.38)

and the waves with the horizontal component of the electid fparallel to the c-axis re-
flect with the factoi3. Due to the symmetry of the monopole field, all angles in tiréase
plane contribute equally to the near-field interaction. Thefficient of evanescent waves
reflection from the surface of a crystal cut parallel to thexcs can be thus approximated
by assuming equal importance of both orientations,

Bl =(B+BL)/2 (5.39)

However, this approach seems to provide only an approxidegeription of how the field
of a point charge reflects off an anisotropic crystal acecwydo a more complete treatment
of the same problem in Refs. [167] and [168]. There it was shthat the response of an
anisotropic crystal to the presence of a point charge alie\surface can be described by
the usual mirror image of the point charge and a certain serfaarge distribution within
the crystal. Furthermore, the additional surface charfge®fely reduces to a line charge
in the case of weak anisotropy. On this basis, the point dipobdel of the near-field
interaction (Sect. 2.4) was extended to anisotropic sasrplgl69]. However, the dipole
model has already been shown in Sect. 2.5.1 to be incapalaleoéntitative prediction
of the near-field interaction, so the formalism from [169heat be used here. On the
other hand, the monopole model has not been yet extendedstatrapic media in a way
analogous to the approach in [169]. For this reason, thevtofsy will be accounted for
only partially through the near-field reflection fact®rgiven by either Eqg.5.37 or 5.39,
depending on the cut direction.

5.4 Monopole vs. Dipole Model

The obvious question at this point is whether the monopoldehim the form of Eq. 5.29
offers an advantage over the dipole model, Eq.2.10. Onlctimeparison to the experi-
mental results can provide the answer. For this comparsbe possible, the vibration of
the s-SNOM probe and the subsequent scattering signal deatiash at a higher harmonic
of the vibration frequency have to be taken into account.
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5.4.1 Higher-harmonic Demodulation

As explained in Sect. 2.3, the light scattered by a vibrasirf8NOM probe contains a lot
of background scattering, not related to the near-field&atgon. In the monopole model,
the background scattering is attributed to the directlyoed! dipolepg, and the near-field
signal to the interaction-induced dipote in Eq.5.26. Please note that a more complete
model of the background scattering and its suppressionrigedein Chapter 6, whereas
the present section provides only the basics necessarylarstand the experimental tech-
nigue employed for the near-field signal detection.

It was already mentioned in Sect. 2.3.4 that by demodul@tiegignal at higher harmonics
of the probe vibration frequendf, the pure near-field signal can be extracted from the
total scattered field. To see how the higher harmonic denatidal technique [56, 57,
170] succeeds in extracting the near-field signal, ritte harmonica, of the scattering
coefficiento from Eqg.5.34 will be calculated next. Mathematicalty, is equal to the
n-th Fourier series coefficient af with respect to the probe vibration frequer@Qy i.e.
calculated over the fundamental peridd= 271/ Q:

On = 1/T/z o(t)e"tdt (5.40)
“TT 1) '

The dependence @f on the time variablé comes from the varying height=H /L as a
consequence of the s-SNOM probe vibration. Denoting thdiaindp of the vibration by

A=al, we get
A(1+cosQt)

h(t) = ;

= a(1l+cosQt). (5.41)
Since only the near-field contrast factpdepends on the distance in Eq. 5.34, Eqg. 5.40 can
be written as

1 T/2 .
an:kg(1+crp)2(yo—1)V\/2L3?/_T/2(1+r/(t))e"”Qtdt. (5.42)

Forn > 0 the constant background part vanishes and the above skpresduces to

31 T/2

= _T/zn(t) e Nty (5.43)

On=0 =Ko (1+Crp)2(V0— 1)

In Chapter 6 it will be shown that due to slight variationshe toefficient, the harmonic
indexn larger thann = 1 has to be chosen in order for the background term to be really
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negligible. For this reason Eq. 5.43 will be compared to tkpeeeiment only fom > 2.

The calculations can be further simplified by noting thatyaelative contrasts are mea-
sured in s-SNOM, expressed through the ratio of scatteedficientsa, resulting from
the interaction of the probe with different materials. Tamgables all constant factors in
Eq.5.43 to be neglected since they cancel when the @ty on g is evaluated for two
materials A and B. This leaves us with the ratiga/ong = 1 a/Nng » Whereny, is de-
fined as

T/2

nh= (1+crp)2%/ n(t)e "t (5.44)

~T/2

Due to the complicated form of the functigngiven by Eq. 5.24, the integral in 5.44 cannot
be evaluated analytically. For further analysis we theref@ve to rely on numerical inte-
gration. This is not a demanding task because the integréneé "t is well behaved for
all physically sensible values of parameters consistetit thie assumptions=R/L <« 1
andh = H/L <« 1 with which the monopole model was derived.

There is nevertheless one possible issue that has to besgégtuThe denominator gf,
41In(r/4)— B (4g—4h—3r)In(h+r/2) contains a difference between two terms that can
in principle become equal to each other. However, they coualg cancel exactly if the
reflection coefficienf3 would be a purely real number. This is never the case in pecti
because all materials exhibit at least some amount of dajgiich makes their dielectric
function €, and therewith the factg8 = (¢ —1)/(¢ +1), a complex number. It has also
been argued in Sect. 5.1.8 that by including the effects dakfeonductivity of the probe
and the radiation resistance into the fagpit becomes a complex number and guarantees
the finite values of the integrand even for purely gal

By inserting the appropriate dielectric functierfor different materials into Eq. 5.44, we
can try to predict the near-field optical contrasts betwéemt The dielectric function
thereby enters Eq. 5.44 through two different reflectiorffanents: 3, the reflection coef-
ficient of evanescent waves, angl the reflection coefficient of propagating waves. It was
already argued in Sect. 5.2.4 thafor calculatingB may be different frome used inry,.
Dealing with e.g. nano-composite materials whose stredgihomogeneous on the scale
of the probe length, but exhibits structural variations emeller scale, we have a situation
where the dielectric function enterirfyyvaries, but the value af, remains unchanged.

Finally, if the value of , does not change over the area of interest, it is sufficieraltutate
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the near-field contrast factor

1 T/2 —inQt
Nn= ?/_T/zr/(t)e dt (5.45)

to obtain the correct scattering signal ratios siag®&/on g = Nna/Nng in this case.

5.4.2 Material Contrast

The near-field contrast factgras defined by Eq. 5.24 requires two parametges)dL, to
be specified before it can be evaluated. These two paranaeeenst directly measurable in
an experiment and the theoretical considerations gavesamhe estimates of their values.
In particular, the real part of the factgwas found in Sect. 5.1.5 to be(gg ~ 0.7 and for
the imaginary part of the constagtthe constraint infig) < 1 has been established. It is
also known that the effective probe length @ust be much smaller than the wavelength,
i.e. A < A. In the absence of other means to obtgiandL, they were determined by
searching for values which are in a good agreement with thgadle experimental data
presented in the remainder of this chapter, including thier@d contrast, approach curves
and near-field spectra of phonon-polariton resonant samplée best values found are
g=0.7e"%8 andL = 300 nm. It is thereby important to note that the same valuéisasie
parameters will be subsequently used for all comparisorteeéaneasured data and not
adjusted to each experiment separately.

As the first simple example, the near-field contrast betwexd gnd silicon will be cal-
culated from Eq.5.45. The required dielectric constantthenmid-infrared frequency
range around = 10um arega, ~ (—5+1)10° [171] andesj ~ 12+ 0.1i[172]. This gives
Bau ~ 1 andfs; ~ 0.85. The known parameters of the experiment are the measilmed v
tion amplitudeA = 16 nm and the tip radiuR ~ 25nm, obtained from the manufacturer
data sheet (Nanosensors, model PPP-NCHPt). The samplereergd by evaporating
a 50 nm thick Au layer on top of a Si crystal and a sharp tramsikietween Au and Si
was produced by scratching away the Au film using sharp tweeZée s-SNOM signal
obtained by scanning the probe perpendicular to the Au-@Gndary is shown in Fig.5.12.
It can be immediately noticed that the optical signal-tesaaatio is significantly lower
on the Au-side than on the Si-side in Fig.5.12. This can béa@x@d by a much higher
roughness of the evaporated Au film compared to the polishedrface. In particular, the
roughness of the Au film was about 5 nm, whereas that of ther&was about.@d nm
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according to the simultaneously recorded AFM topograpbgai

Apart from the above effect, the behavior of the optical algn Fig. 5.12 can be described
by two main features: a slow but steady increase from thedsit®wards the Au-side,
and a larger, abrupt increase at the Si-Au boundary. Thelgtearease in the optical
contrast with the distance from the boundary correspontfeetoontinuous transition form
the arrangement illustrated in Fig. 5.11(b) to the one in &ifl(c). In the former case
the probe illumination is almost the same on both Si and Aereas in the latter case the
illumination of the probe is stronger on the Au side than obe&®iause of the larger far-field
reflection coefficient. In Sect. 5.2.4, this part of the scattering coefficient wadieitly
introduced as a separate factor, independent of the nédicbatrast. Consequently, the
near-field contrast between Si and Au should in principle éerminined from the abrupt
change in the s-SNOM signal at the boundary between the twerrals. However, there
exist two problems which prevent the direct readout of tigaali levels at the boundary.
The first of them is a topography artifact which appears wheiptobing tip starts climbing
onto the Au film and partially loses contact with the surfathis causes a 50 nm wide
notch in the optical signal that must be avoided in the amalyi$e second effect is related
to the interaction of the probe with the Au film edge which proes its own near fields
sensed by the probe and also creates a larger interactianiene a flat surface alone. In
Fig. 5.12 this effect manifests as an offset to the near-§igjdal reaching its peak value of
~ 8% of the signal level at the boundary and decaying to ndagjégialues over a distance
of about 150 nm.

To investigate how much do the above issues influence theriexg@al determination
of the pure near-field contrast, three different methodsarployed to measure the con-
trast between Si and Au in Fig.5.12. The results obtainexivwialy are compared to each
other and to the theoretical predictions In Table 5.1. Trst firethod (1) uses the average
near-field signal level between 150 and 200 nm from the eddsotmsides (full lines in
Fig.5.12) to determine the near-field contrast between &ifan The said distance was
chosen as the best compromise between the long-rangernbion effect favoring shorter
distances from the edge and the short-range artifactsifaytarger distances. Still, the
variation in the illumination over the average 350 nm sefjp@mébetween the measurement
points on the Si and Au side may lead to an underestimateal [rtisi/ Nnau| by up to
4%. The second method (2) aims at correcting this problenxtrggolating the linear part
of the near-field signal trace on each side to the pwiatO where the contrast between
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Si and Au is calculated. This procedure, depicted by theethfhes in Fig.5.12, is ex-
pected to yield the most accurate results for the near-fraMrast because it is immune to
both the long-range illumination effects and the shorgeaartifacts described in preced-
ing paragraph. Finally, the third method (3) avoiding thenlination effects, but not the
edge artifacts is also presented in Table 5.1 for complsterieuses the values closest to
the edge on both sides, marked by the dotted lines in Fig. AliRough the values can be
read very precisely with this method, its accuracy is thestvor all three methods because
of the edge effects and the noise which can significantly #iteresults since no averaging
is applied.
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Figure 5.12: Line scan of the transition area between laagéftl and Si surfaces. Shown is
the amplitude of the detected scattering signal demodiikttéhe (a) second,
and (b) third harmonic of the probe vibration frequency.

The comparison of the experimental results in Table 5.1catdss that all three methods
yield almost the same results, each differing from the atlgrless than 4%. This value
is comparable to the estimated measurement errors-06%, which means that any of
the three methods may be used in practice if an error of up &% can be tolerated.

Further comparison of the experimental results to the #tesal predictions for the Si/Au

near-field optical contrast demonstrates that the monapotéel is very successful in pre-
dicting the measured near-field contrast for both the seeoddhe third harmonic of the
detected scattering signal. Furthermore, the predictegesdie within the bounds of the
experimental error of the most accurate measurement (23 .digole model, on the other
hand, overestimates the Si/Au near-field contrast by mane #5%.
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|025i/ T2 aul | 10351/ 03U
Experiment (1) | 0.59+0.02 | 0.52+0.02
Experiment (2) | 0.61+0.01 | 0.54+0.01
Experiment (3) | 0.59+0.03 | 0.52+0.03

Monopole model 0.61 0.55
Dipole model 0.79 0.77

Table 5.1: Near-field optical contrast between Si and Au mreaisclose to the material
boundary. The experimental values denoted (1), (2) and €8¢ wbtained from
the full, dashed and dotted line pairs<at 0 in Fig. 5.12, respectively.

The superiority of the monopole model over the dipole modeld have been anticipated
in this example because the monopole model contains tworedeas which were ad-
justed to provide the best fit to the experimental data. A kygtical introduction of free
parameters into the dipole model would surely provide jegi@d agreement to the mea-
sured Si/Au contrast as the monopole model does. As showrbin ¢ven the distance-
dependence of the near-field signal can be fitted with an dgténersion of the dipole
model in which the dipole assumes the polarizability andcdrger position of a spheroid
instead of a sphere. However, such a model results in an evese\it to the near-field
spectra of resonant samples due to the reduced near-fighdirggpstrength caused by the
shift of the dipole away from the surface. Even if two paranetare introduced into the
dipole model through the adjustable position and polaiiitglof the dipole, it still seems
to be capable only of improving one aspect of its performatdfe expense of another
one. This may be the reason why no extension to the pointelipoldel has been reported
so far capable of simultaneously predicting data from aildki of experiments with the
same set of parameters. On the other hand, the monopole rmloekdly succeeds at this
task, as will be shown next with two more challenging example

A more rigorous and thus more interesting test for the the@lemodels is the near-field
signal behavior as a function of the tip-sample distancés Kind of plot is usually called
an approach curve, although a more proper name would besatretirve. This is because
such curves are experimentally obtained by switching &fdlesed-loop distance control
of the AFM and moving the sample away from the probe. The al@sehprecise distance
regulation makes the approach curves more noisy than thalsigthe normal operation
mode. Additionally, the near-field signal level at significarobe-sample distances is very
weak, so that averaging over a larger number of approactesusvoften performed to
obtain more reliable results.
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The second and third harmonic approach curves obtaine@ as¢nage value of 100 single
approach curves above a gold surface are presented in F8g. bhe measurements were
carried out with a probing tip (Nanosensors, PPP-NCHPtciwihadiusR = 20 nm was
estimated from the topographical resolution, and the nredsubration amplitude was
A =18 nm. The theoretical values were obtained from the momopoldel using the same
values of parametersandL as above.
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Figure 5.13: Approach curves on a gold surface demoduldte] aecond harmonia(=
2) and (b) third harmonicrn(= 3). Shown are the experimentally obtained
values (dots), and predictions by the monopole model (indé)land dipole
model (dashed line). The values are normalized to the sagihl= 0
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Figure 5.14: Approach curves on a silicon surface demoedlat (a) second harmonic
(n=2) and (b) third harmonicn(= 3). Shown are the experimentally ob-
tained values (dots), and predictions by the monopole m@dklline) and
dipole model (dashed line). The values are normalized tgitieal atH = 0.
The lower experimental approach curve (red dots) in panv@s obtained by
complex averaging of raw data, whereas the absolute valesaveraged for
the upper curve (blue dots).

The agreement between the observed second harmmoaiz)signal in Fig. 5.13(a) and the
prediction by the monopole model is almost exact. This isnaiication that the distance
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dependence in the monopole model is indeed a good approaimadtthe true tip-sample
interaction. On the other hand, the dipole model predictsiemfaster decay of the signal
than actually observed. This is not surprising since theldifield decay 17° is much
faster than monopole one/Z. Similar comments can be made about the third harmonic
in Fig. 5.13(b) as well.

The same kind of measurement repeated on a silicon surfabewen Fig.5.14. The sec-
ond harmonic signal on Si again shows excellent agreemeht thve monopole model
prediction, and the dipole model exhibits an even largecrdjgancy than above the Au
surface. Unfortunately, a meaningful comparison betwberekperimental and theoretical
approach curves at= 3 on Si is not possible because of a large amount of complesenoi
contained in the recorded optical signal. Due to this nal#fégrent results are obtained
depending on whether the absolute value is taken beforeter aferaging the measure-
ment results, as shown in Fig.5.14(b). Assuming that the tinird-harmonic approach
curve would lie between the two experimental curves shotwmould be again very close
to the monopole model prediction. However, further invgetions are necessary to decide
whether this is indeed the case.

Altogether, it seems reasonable to conclude that the mdaapodel represents a sig-
nificant improvement over the dipole model concerning ttstatice dependence of the
near-field interaction.

5.4.3 Near-field Spectra of Resonant Samples

The denominator in the Eq. 5.24 will be now examined agawvak already mentioned that
the expression 4 (v /4) — B (4g—4h—3r) In(h+r/2) cannot be equal to zero because
of the imaginary part of the constarBsandg. However, depending on the actual values of
these factors, the denominatorrmpitan in some case approach zero. This gives rise to the
near-field resonance discussed in Sect. 2.5, first demeedsiva a silicon carbide surface
aroundA = 11um[63]. The effect was found to occur for the real part of theleltric
constant around’ =~ —2, i.e. the real part of the reflection coefficighit~ +3.

The strength of the near-field interaction between a protymgnd SiC surface in contact
with it is plotted according to the monopole and dipole medelFig. 5.15(a). We see that
both models predict a resonant response, but the prediosatigm and the strength of the
resonance are different. The probe polarizability, andetfoee also the near-field interac-
tion strength is greater in the monopole model, so that then@nce condition is reached
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Figure 5.15: Scattering signal generated by the near-idalaction between a probing tip
and SiC surface, relative to Au surface. Predictions by tbegpole model
(full line) and dipole model (dashed line) are displayedtfa case of a sta-
tionary (non-oscillating) probe in contact with the sample

at lower values of rg8). From Fig. 3.1(b) we see that lower values gfggcorrespond to
lower frequencies, where the damping is also weaker, thpkieng why the predicted
magnitude of the near-field resonance is larger in the mdeapodel. However, neither
of these predictions can be directly compared to the medsaiees since the near-field
signal is recorded by a s-SNOM only at a higher harmonic optiée vibration frequency
to suppress the background signal.

When the tip vibration is taken into account, the situatiendimes more complicated since
both the interaction strength and its distance dependensthe correctly modeled at the
same time. The prediction for the harmonics of the scattiéettlin the region of near-field
resonances therefore represents the ultimate test fondloedtical models.

Fig.5.16 displays the comparison of the theoretically mted and experimentally ob-
served near-field spectra of a 4H-SIC crystal cut paralletht c-axis (cf. Sect.5.3).
For theoretical predictions, the polarizabilities giventbg. 5.29 (monopole model) and
Eq.2.10 (point dipole model) were used and the signal detatida was performed ac-
cording to Eq.5.40. The experimental parameters used wererobing tip radiuR ~
35nm (MikroMasch, CSC37/Ti-Pt) and the vibration amplédd= 25nm, and the values

of g andL were not changedy(= 0.7€*% | L = 300nm). To minimize the influence of the
far-field reflection factorp, the measurement was performed about 200nm far from the
boundary of SiC crystal surface and 30 nm thick Au film evapt@nto the SiC crystal.
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Figure 5.16: Near-field spectra of a 4H-SiC crystal cut perab c-axis. Shown are the
values obtained experimentally (dots) and predictionshgymhonopole (full
line) and dipole model (dashed line) for the second and trardhonic ampli-
tude and phase.

From Fig. 5.16 it is obvious that the monopole model repredube experimental spectra
much better than the dipole model. Apart from the signal phaghe region above the

resonance, the monopole model exhibits a quantitativeeaggat with the experiment. As

aresult, the ultimate goal of recovering the optical comistan the nanometer might finally
become reachable.



6 Background-free Detection of
Near-field Signals

In Chapter 5, a new "monopole” model of the near-field intececbetween s-SNOM
probes and investigated samples was presented. Even thimugkar-field interaction was
shown to be mediated primarily by the evanescent fields ingége between the probe
and sample, the interaction can still be detected and megs$ar from the probe. This is
possible because of an additional dipole momeimduced in the probe as a consequence
of the near-field interaction. The dipole momgnbscillates with the illumination field
frequencyw and therefore radiates light which can be utilized to meatiue near-field
interaction strength. This lightis usually referred tolas'inear-field signal” or even "near-
field scattering”. Strictly speaking, the latter term shiblé understood as a shorthand for
"near-field-interaction-induced scattering”.

The near-field interaction described by the monopole modigl takes place after an ini-
tial dipole pp has been induced in the probe by the illumination fig{d(Fig. 5.2). By
definition, pg is the constant part of the total tip dipole moment po + p, not affected
by the near-field interaction. For this reason, the lightatsdl bypy conveys no informa-
tion useful for near-field microscopy and represents th&l&8 "background signal” or
"background scattering”.

Itis long known that the background signal may cause vamotiscts in s-SNOM images

and should be suppressed as much as possible[43, 56, 57/39, The mechanism of

background signal generation and methods for its separtben the near-field signal are
examined in this chapter. A new "pseudo-heterodyne” s-SNE@jvlal detection technique
is thereby introduced and its advantages for near-fieldtspssopy are demonstrated in
comparison to alternative techniques.
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6.1 Background artifacts

We start the investigation of the background signal by dlegithe total scattering con-
trasto of the coupled tip-sample system, including both the neda-Aind the background
contributions. For the model spheroid from Chapter 5, tiselltevas already derived in
Eqg. 5.34, repeated here for convenience:

0 =kg (14+Crp)®(—)WPL3(1+n). (6.1)
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Figure 6.1: Approximate calculation of the background éépmomentpg 1 of a real tip:
the model spheroid backgroumd = 2QoL is increased tgg 1 in proportion
to the ratio of the true tip lengthr to the model spheroid length.2 This is
equivalent to shifting the chargeQg to the real tip end without changing its

value, yieldingpp T = QoLr.

For a real tip, the situation is more complicated becausenthé@el probing tip length 12
differs from the true tip lengtht. While the model tip lengthl2measures the portion of
the tip responsible for the near-field interaction, the lgaslind scattering is produced by
the entire length.t of the tip shaft in focus. Unledsr < A, the scattering by the entire tip
requires a full electrodynamic treatment. Since this wooake the analysis considerably
more difficult, a simple estimate will be made here insteadpadrticular, the difference
between the model spheroid length @nd the probing tip lengtht will be accounted
for by increasing the contribution of the background scattgin proportion to the probe
length. This is equivalent to moving the charg&o from the point close to the spheroid
end to a point near the opposite probe end without changigaiue, as illustrated in
Fig.6.1. Although it represents just a rough estimate, #sellt obtained is much more



91 6.1 Background artifacts

satisfying than the alternative approach of increasindithiength toLt before the charge
Qo is calculated, which would inevitably lead to a large ovéneate in both the near-
field and background signal strength because of the nedlesti@dation effects. With this
approximation, the background dipole moment of the tip beespo T ~ QolLt, resulting
in the total dipole moment

PT = PoT +P=LQo (X1 +n), (6.2)

with the factorxT = Lt/2L. In analogy to Eq. 5.34, the approximate scattering coefiici
ot of the probing tip may be written as

o1 =kg (L+crp)* (W —HWL3 (X1 +1). 6.3)

To determine the numerical value gf, we can turn to Sect. 5.4, where a good fit to
experimental values was obtained by using the value:2.6um. Given the tip length

Lt ~ 15um, the background signal is expected to be between one andrtleoscof mag-
nitude stronger than the near-field contribution. The ¢fé@dding the background scat-
tering to the near-field signal is illustrated in Fig. 6.2ngsthe SiC near-field resonance
as an example. Foyxr = 24, the maximum relative DC contrast between SiC and Au
measured by a long tip (Fig. 6.2(b)) is reduced by a factorboiud 20 compared to the
contrast obtained using a small spheroid (Fig. 6.2(b)) dwie50 compared to the pure
near-field contrast (Fig.5.15). Since the SiC near-fieldmasce represents an example
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Figure 6.2: DC scattering contragtfor ar = 20nm probe in contact with a SiC crystal
surface, relative to Au surface. Shown are the scatterimgyasts calculated
for (a) a small spheroid witht = 2L, and (b) a long tip witilL.t = 24L. The
parts (a) and (b) can also be compared to Fig.5.15, wherathe salculation
with Lt = 0 is shown.
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of very strong contrasts, it is likely that under such cirst@amces the near-field contrast
between two non-resonant materials would be hardly ndtieeat all. Yet despite such
largerelative contrast loss, thabsolutecomplex contrast is not affected at all because the
background term is additive with respect to the near-fiyaai. Therefore, it should still
be possible to recover the pure near-field contrast, pravide background contribution
can be eliminated.

6.1.1 Diffraction Artifacts

Besides the loss of the relative contrast, there existsumigdr reason why the background
has to be suppressed. In particular, the background doattisrgenerated by the entire
probing tip body and therefore depends on the exact tip saagehe illumination profile
along the tip shaft. The illumination profile can change astsort and long distances in
very complicated ways due to perturbations of the illumorafield. The perturbations
can be caused, for example, by diffraction of the waves reftefrom an inhomogeneous
surface. Since the perturbations modify the illuminatioofie along the tip shaft, they
necessarily influence the background scattering. The ki pere is that changes in the
background scattering have exactly the same impact on tkeetdd signal as the changes
in the near-field interaction. Yet the background signal iscmstronger than the near-
field part, so even a small change in the background signalbmayfficient to overwhelm
the near-field contrast. An example of this effect observgmeementally in the visible
spectral range can be found in [174], Fig. 4.6. It clearly destrates that diffraction can
produce optical contrasts which do not resemble the ofigitnacture of the surface and
also do not coincide with it spatially. Both of these projertare disadvantageous for the
near-field microscopy and should be avoided for reliable-fiel imaging.

6.1.2 Topography Artifacts

The diffraction artifacts can be often recognized when tqgyear in the near-field images
because they exhibit variations on the wavelength scalebaad no resemblance to the
sample topography. Although in this case the topographgshel spot the diffraction
artifacts, it can cause another kind of artifacts on its olamely, it has been observed
that an optical contrast can be obtained solely due to thdl sar@ations in the sample
surface height, with no relation to the optical propertiéshe material under the probe
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[175]. Unlike the diffraction artifact, the topography iéatt induces the optical signal
variations as fast as the change in the sample height. Forghson it is easily mistaken
for the true optical contrast. The origin of this artifachdae understood by examining
the interference of the directly incident and reflected wsaagove the sample, as shown in
Fig.6.3. A region of "standing waves” is formed where the twaves strongly interfere.
This interference makes the scattering amplitude depeaehe height above the surface.
Since the probing tip always follows the topography of thegke, its vertical position in

AN
)

Figure 6.3: Gaussian beam with waist sizé Peflecting off a silicon crystal surface.
Shown are (a) amplitude and (b) phase of the resulting wave.
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the standing wave field can change slightly as the sampleaisngd below the tip. It is
thereby important to note that the standing wave field iseqigale to variations on the
wavelength scale and does not follow the rapid local heighiations. As a consequence,
the background scattering changes in response to the saomagraphy. Although the
background signal change due to a few tens of nanometergriagpoy is quite small, it
is important to remember that only a few percent change inbekground scattering
can represent a significant variation in comparison to the pear-field contrasts since
Pi < poT,i.e. N K XT. A detailed analysis of the topography artifacts can be doan
[56] and [176].

The examples presented above serve to motivate the eftoasppress the background
scattering as much as possible. One obvious way to redudeattiground would be to
tailor the probing tip to the shortest possible length with@ducing the near-field signal
strength. In the best case, the total tip length should balgquhe effective tip length
participating in the near-field interactioby ~ 2L. However, no experimental results in
this direction have been reported yet. Even if such an appresentually turns out to
be effective, it still would not be able to completely elirate the background, despite the
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presumably large effort required. Rather, it would onlygrihe near-field and background
signal strength to the approximately same order of mageitud

Because the background signal can never be completelynglied, a method is needed to
separate the background from the near-field signal aftexstidieen generated. As will be
shown next, two different techniques are actually sim@tarsly required for a complete
background suppression because there are two differetrilmaions of the background
to the measured scattering signal: one of them is additheflze other one multiplicative
with respect to the near-field signal.

6.2 Additive s-SNOM Background

6.2.1 Origin of the Additive s-SNOM Background

The scattering coefficierdr from Eq. 6.3 can be naturally divided in two terms; the near-
field scattering coefficienty and the background scattering coefficiegtdefined as

on = ko(1+crp)®(—1)w?L3n, and (6.4)
o8 = kg(l1+crp)?(Yo—1)W?L3xT. (6.5)

Added together, they give the total scattering coefficidnthe probing tip,or = oy +

og. According to its definition,xt is a constant number and does not depend on the
probe-sample distance or interaction. On the other sigen#dar-field contrast factay
(Eq.5.24) is a measure of the near-field interaction streagtl vanishes for large distances
between the probe and the sample. Based on these facts,tthetiex of the pure near-
field signal might look like a straightforward task. In padiar, if the scattering coefficient
o7 (H — o) = og measured with the probe far away from the sample is subtt&aim the
scattering coefficientr (H = 0) obtained with the probe in contact with the sample, the
differenceor (H = 0) — o7 (H — o) = on(H = 0) corresponds to the near-field scattering
coefficient atH = 0.

Unfortunately, the approach outlined above does not warkhie same reason the topog-
raphy artifacts (Sect.6.1.2) appear. Namely, backgrougrbs changes with the probe
distance from the sample due to the interference betweewdkies directly incident on
the probe and those reflected from the sample. This obsenvdémands the complex
coefficientcin Egs. 6.4 and 6.5 to be treated as a function of the distbinlcetween the
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probe and the sample. As a consequemgéH — o) = og(H = 0), and no definite con-
clusion about the near-field scattering coefficiegtcan be made based on the difference

OT,.0 — OT,0-

An alternative method of background signal suppressidnidiges on the measurement
of the change in the scattering coefficiernt over short distanced, on the order of the
probing tip radiufk < A. Over such distances, the illumination field due to the fetence
between the direct and reflected waves remains almost canstathat the background
term og only changes very slightly and a large part of the scattecimgfficient change
can be attributed to the near-field signal. In principle,réguired distance variation may
be achieved by moving either the probe or the sample. Sirwasito be done repeatedly
one or more times for each pixel in an image, it is in practicgerconvenient to vary the
tip-sample distance by letting the probing tip vibrate. sTehables the average distance
to be regulated based on the tip vibration amplitude and igtartte variation can also be
performed significantly faster since the tip mass is muchrelatvan the mass of the entire
sample and its carrier.

Due to the tip vibration, the scattering contrastis periodically modulated with the fun-
damental frequency equal to the tip vibration frequefcyBeing a periodic function of
time, o7 can be decomposed into harmonic components with frequeftie= NQ and
amplitudesor h. The amplitude®, are thereby equal to the Fourier series coefficients of
or, as explained in Sect.5.4.1.

Since the Fourier transform is a linear operation, we caarseép the harmonic amplitudes
ot into a ear-field and a background part the same way as thenakifyinctionor to
obtainor n = on,n+ O n. TO estimate the ration n/ g n, let us recall that the background
signal oscillates on the wavelength)(scale (Fig. 6.3), whereas the near-field signal di-
minishes over a few tip radR < A (Fig.5.1). Since higher harmonics have higher fre-
guencies, they measure faster changes in the scatterimg sigd favor the increase in the
ratio on n/ 0B n With increasing index. This means that by choosing a sufficiently large
n, the pure near-field scattering contrast can be recordeds agproach to background
suppression is known as the higher-harmonic demodulagmique [56, 57, 170].

In the following, a quantitative analysis of the relatiortveeen the near-field and back-
ground scattering coefficientsy n and og , will be presented in order to find the experi-
mental parameters which maximize the ratign/og n.
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6.2.2 Background Scattering in Absence of Sample

To reduce the complexity of the analysis, several simptifice will be made. First of all,
only plane wave illumination will be considered. Secon@, pinobing tip vibration ampli-
tude A will be assumed to be small with respect to the illuminaticavelength A > A.
With the illumination in the form of a focused Gaussian beauth the typical experimental
parameterd\ ~ 20nm,A ~ 10um, the said approximations should not have a significant
influence on the end result. Third, the probing tip will beueeld to a point scatterer at
its apex for a first qualitative analysis, and fourth, thee@fbn from the sample will be
ignored for the beginning. The last two simplifications havasiderable influence on the
end result and will be reconsidered later.

In practice, having no reflections from the sample meanstiiggprobe is actually located
far away from the sample, in which case no interference paétiein to Fig. 6.3 is formed.
Under this condition, we can assume the incident field magdeits constant over the entire
tip trajectory as long as the tip vibration amplitude is dnosampared to the wavelength
and therefore also to the focal spot size. However, the @mtithnd thus also the scattered)
field phase does change as the tip oscillates. If we denotadhe tip-sample distance by
Ho, the optical path difference to an arbitrary poig+ AH on the tip trajectory is equal
to AS= AH cosf, as depicted in Fig. 6.4. Substituting= 271/ky, we obtain the phase
difference between the pointy andHg + AH:

AP = KgAS= kgAH cosf. (6.6)

Since the probing tip oscillates according to the funcidbh= A cosQt, the illumination
field phaseap continuously changes according to the funcifoa ®ycosQt. The phase os-
cillation amplitudedy is equal taA¢ from Eq. 6.6 at the point of the maximum elongation
AH = A

@y = Alkg cosb. (6.7)

The same path difference is encountered again with theteati@aves, thereby doubling
the total optical phase variation in the scattering coeffiti This requires Eq. 6.5 to be

rewritten as
g = kg €2P0%05 (1 — 1) W23 x7, (6.8)

where the reflection form the sample has been neglected $etaeisample is assumed to
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Figure 6.4: Optical path length change due to the motion®f&ttattering source.

be out of focus.

The additional factog2%0%0s! jn Eq. 6.8 can be interpreted as a sinusoidal phase modu-
lation of the scattering signal. Since the €adactor stands in the exponential, the phase
modulation is obviously not a linear process and it necdggaoduces higher harmonics

of the modulation frequencf. The amplitudes of the higher harmonics can be obtained
form the Fourier series decomposition of the functms(t). All factors in Eq.6.8 ex-
ceptf = &9 = 2P0 5re constant and are not affected by the Fourier expanstma. T
Fourier coefficientd,, of the functionf can be expressed in terms of the Bessel functions
of the first kind,J, [155, 176, 177], yielding

f = Jn(200) i". (6.9)

Since we are considering small vibration amplitudes A, we haveAky < 1 and there-
with ®y <« 1. This permits the Taylor expansion of coefficiefifaround®y = 0:

(i Do)
In|!

+0O(®o)?. (6.10)

n:
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With the aid of Eq. 6.10, the background scattering coefitsiean be calculated:

(i Do) "

BT (vo—1D)W?L3 7. (6.11)

OBn~ Kg

Given that®g < 1, the above expression reveals a rapid decrease in thetadeptf the
background scattering coefficient with the harmonic indeyust as expected from the
gualitative arguments presented in the introduction td.5e2.

Note that the absolute valyie| has been used in Eq. 6.10 to explicitly allow for all integer
values ofn, both positive and negative. The provision for such values i3 necessary
for the following reason: when the modulation described@8)is applied to the optical
carrier wave oscillating at frequeney, the carrier gets split into sidebands with lines at
frequenciesun, = w+ nQ, i.e. both higher and lower than the carrier wave frequency
Since the expansion coefficiends , are symmetric around = 0 and they overlap upon
the measurement of the carrier wave intensity by a photottetdor practical purposes it
is often irrelevant whether is taken to include negative values or not.

6.2.3 Estimating Probe Vibration Amplitude

A short digression will be made here before proceeding t@ttadysis of the background
scattering in the presence of the sample. Returning to Eg), & can be easily seen that
it provides an interesting possibility to obtain the prapiip vibration amplitude from
the ratio of two subsequent background scattering coefti€i@s ,_1 andogpn, N> 1. In

particular, ' '
Ogn  1®g iAkgcosb

OBn-1 n n

(6.12)

With the probe far from the sample, there are no reflectiomftiwe sample surface & 0)
and also no near-field interaction & 0). The measured scattering coefficieats, are
thus equal to the background coefficieats,. As a corollary, we get a purely optical and
contactless means to measure the absolute tip vibratiofitadg

B n|ogn|A
21 0B n-1| COSO

(6.13)

The only prerequisites for this are the known illuminatioawelengthA and the illumi-
nation anglef. Since in most cases the DC signak) is not available either because
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it is not measured at all or because it is contaminated bycteftes and scatterings from
sources other than the probing tip, the lowesicceptable is usuallg = 2. The back-
ground signal ah = 2 can be rather weak, so the detection sensitivity must bedngugh
to measure this signal.

As a conclusion, let us note that the vibration amplitédebtained this way should be
used only as an estimate because Eq.6.13 was derived fagla pwmint scatterer and not
for an elongated tip and also the illumination angle is natyyarecisely defined for a
focused light beam. Nonetheless, with the wavelergth10 um and vibration amplitudes
A=~ 20nm, the results obtained from the background signal nmeasants with the aid of

Eqg. 6.13 were experimentally found to differ by only abou¥d® 20% from the vibration

amplitudes determined by the standard procedure of mamgtdine cantilever deflection
signal decrease as the average distance between the pootbe@ample in the intermittent
contact mode is continuously reduced.

6.2.4 Background Scattering in the Proximity of the Sample

Egs. 6.11 and 6.13 are only valid when the probe oscillatefrdan the sample so the
reflections from the sample surface can be ignored. Cleadsr-field signals must be
measured in the immediate vicinity of the sample surfaces€to the surface, the probe
is illuminated by both the directly incident and the reflecteaves which together form a
"standing wave” pattern, shown in Fig. 6.3. In the regiontadisg interference between in-
cident and reflected waves, it is mostly gn@plitudeof the illumination field that changes
with the probe-sample distantg rather than its phase. However, each interfering wave
itself still has a constant amplitude and a changing phalse phase change of the directly
incident wave in the form of Eq. 6.6 has been derived from &-iy. By symmetry, only the
sign of the phase chandg in Eq. 6.6 has to be inverted for the reflected wave, yielding:

AP, = —Apyg = —kgAS= —kgAH cosb. (6.14)

With this information, Eq. 6.5 can be improved to accounttf@ changing phase depend-
ing on the probing tip position:

Og = Kg (éA¢+crpeiA‘p)z(yo—l)WZL3XT, (6.15)
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with A¢ = Aky cosB cosQt = dycosQt, obtained by expandingH in Eq.6.14 af\H =

A cosQt. To determine the Fourier coefficientsay, it suffices to consider only the func-
tion f = (€PocOSN 4 ¢ e PocOM)2 gince all other values are constant by definition.
Expanding the square iff, we get:

f = e2P0Cos) 4 2yZe12Pocosl) | oeyp (6.16)

The Fourier expansion of Eq. 6.16 can now be performed tgrtetm. The Fourier coef-
ficient of the last term in Eq. 6.16 is just B,0n, whered, is the Kronecker delta symbol.
The remaining two terms can be immediately noted down byogyaio coefficientsfy, in
Eq.6.10. This way we obtain

(io) 5 5 (—idg)"

N 2
fn~ B +coryg B +2Crpon, (6.17)
or, equivalently,
i Pg)In!
fr~ %(14—02@,(—1)”) +2¢rpon. (6.18)

With f, from Eq. 6.18, the Fourier series coefficients, assume the following form:

ogo ~ (1+crp)?(pw—1)w?L3xr, and
i Pg)IN!
ko( 0)

!

Q

OB.n£0 (1+2r3 (=1 (w— D)W L3 7. (6.19)

6.2.5 Overall Scattering Coefficient

To obtain the total scattering coefficient including boté tiear-field and background con-
tributions, the effect of the scattered field phase modutatly the vibrating tip on the near
field signal has to be determined. The initial expressiorofpis easy to derive by analogy
to the background signais from Eq. 6.15:

o = kg <eiA¢ +CrpeiA¢>2(Vo—1)W2L3n. (6.20)

However, the analogy betweemn and oy cannot be extended to the Fourier coefficients
Os,n andon n because unlikgr which is constant, the near-field contrast fagjatepends

on the probe-sample distance. For this reason there areuardities which depend on the
time variablet in Eq. 6.20:A¢ andn. The integral which needs to be evaluated to obtain
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the expansion coefficientsy n thus reads (cf. Eq. 5.43):

3 1 T/2 —|th

Onrzo = Ko (1o — D WAL / dt, (6.21)
T/2

with f(t) = (& Pocost +crpe*iq’0C°SQt)2 as before. The factorsandn in the integrand

of Eqg. 6.21 cannot be separated before integration, butototen theorem can be applied

to the resulting Fourier coefficientg andn,. This way we obtain

O-N’n |:| Z r’nfm fm (622)

meZ

As already mentioned, the coefficierfig [ (i @o)™ /|m|! given by Eq. 6.18 drop rapidly
with the increasing absolute value mfdue to®y <« 1, so only the ternm, fo should be
kept in sum 6.22. From EqQ.6.18, we ght= (1+crp)2, and the near-field scattering
coefficient becomes

O~ Ko (1+crp)? (Yo — 1) WP L3 . (6.23)

It is important to keep in mind that although the terms mfm, m# 0 in EQ.6.22 can
be neglected in comparison tp fo because, < fo, the background signalg n U xT fn
detectable at the same frequencyogs, cannot be ignored priori due to the large value
of xT which might compensate for the small valuesgf

Combiningog n from Eq.6.19 andon n from Eq. 6.23, the overall scattering coefficient
OT,n20 Can be constructed:

Orn = UB,n‘l‘UN?n%ko(VO—l)WZLS'

i )N
(XT %(Hcgr%(—l)”wn(1+chp)2). (6.24)

Before proceeding to the quantitative comparisomef, andog n, the introduction of two
different coefficientg andcy has to be explained. It is clear that if the probing tip is
approximated by a point scatterer, there is only one valuenacessary:

Cg = Cy = C = e 'KoHocosd (6.25)

The meaning of the quantitiddy and 6 is illustrated in Fig. 6.4. As soon as the true tip
size is taken into account, two different coefficieqgsandcy are needed because, at least
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according to the monopole model, the total tip lengthis not the same as the length
2L participating in the near-field interaction so the backgand near-field scattering
originate from different positions. Further progress itetiining the coefficientsg and
cn is hard to make because in addition to the probe distance fhensample, they are
dependent on several other factors, including the exadigpshape and length together
with the illumination profile along it.

Assuming the background part will be suppressed by choasisgfficiently largen, we
need to determine only the factay. If the probe is approximated by a spheroid of length
2L as in the monopole model, and the point scatterer (dipolegiwaq. 6.25 refers to is
placed in the center of the spheroid, we hilge= H + L and therewith

oN = e—iko (H+L) COSQ. (626)

One further correction toy is needed to account for using a focused illumination irtstea
of a plane wave illumination assumed in 6.26. If the focaltdps e.g. a Gaussian pro-
file centered on the tip, the sample might only reflect thedhthis profile onto the tip,
thereby making the absolute value of the coefficnsmaller than unity. Because of the
large uncertainty in the actual beam profile and positioatired to the probing tip, later in
Chapter 7 the absolute value@f will be adjusted based on the fit between the theory and
the experiment.

Besides the factocy, there exists one more problem with Eq.6.24, namely thecefle
tion coefficientr,. While it is easy to determine on flat homogeneous surfatestsred
surfaces may give rise to diffraction, thereby changingetfiective value ofr,. Beside
the perturbations in probe illumination field caused by thiéected waves, a part of the
incident light intensity can also be diffracted into sudaeaves if the sample material sup-
ports them. Except when this effect is exploited to invesBghe properties of these sur-
face modes such as surface phonon or plasmon polaritonsf®&presents an unwanted
disturbance which can interfere with the measurement oénatspecific near-field con-
trasts. As discussed in Sect. 3.3, surface polaritons gedpan the interface between two
materials with opposite signs ef (real part of the dielectric function). This condition is
always satisfied by near-field resonant sampdés+(—2) in air or vacuum, so that special
care must be taken to minimize the excitation of surfacergolss in order to obtain re-
liable near-field spectra of resonant samples. Furthern@osérong local perturbation of
the electric field may be caused by small polariton resonartigbes or gaps. This effect
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can be exploited to map the eigenfields of resonant strugftli#8], but it should also be
avoided for the analysis of the chemical or structural cositpm of the sample.

It is important to note that perturbations of the illumimeatifield influence not only the
background but also the near-field signal, in the form of atiplidative factor. For this
reason, their manifestation in s-SNOM images can be elitathaeither by the higher-
harmonic demodulation technique nor by any other known ¢paeknd suppression tech-
nique. However, two possible solutions to this problem wdlproposed here as an aid for
future attempts to factor the variations in the illuminatfeeld out of sS-SNOM images.

The first proposed solution consists of recording the neda-Bcattering signady n de-
modulated at two different harmoninsandmand finding the rati@ n/onm. In the next
section it will be shown that this ratio is dependent on thiécapproperties of the investi-
gated material, but any multiplicative factor constantrdaiae oscillation cycle of the probe
cancels when the ration n/0onm is calculated. Furthermore, this procedure might also
obviate the normalization step in the process of the nelar$jgectrum construction (sect.
2.5.1). However, a big disadvantage of such approach isethaction in the near-field
contrast it causes. Preliminary calculations indicaté tiia way only about 10% contrast
between Au and Si surfaces should be expected instead of 36%uobtained by direct
comparison of scattering coefficients (Sect. 5.4.1).

Alternatively, all Fourier coefficient®rr, of the scattering coefficientr having non-
negligible amplitudes (with the possible exception of th€ &rm or ) can be simul-
taneously recorded, and the functiof(H) reconstructed from them. In the next step,
Eqg.6.24 withn from Eq.5.24 is used to fit the experimentally obtained fiomctoT (H),
with the dielectric functiorz of the sample and the reflection coefficiepas the adjustable
parameters. To make this possible, the remaining parasyetercs, cy askys should be
pre-calibrated on a sample with known optical propertiemight be an interesting topic
for further research to find out whether a reasonable fit betvtiee theory and the experi-
ment could be achieved this way.

6.2.6 Near-field vs. Background Scattering

It has already been mentioned several times that the baskdroontributionog, to the
total scattering coefficientrr , = 0gn + Onn becomes negligible compared to the near-
field contributionon p, if the scattering signal is measured at a sufficiently higimizanic

n. It has been experimentally observed that "sufficientlyhhigy practice means second
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or third harmonic 1t = 2 or n = 3) in the infrared, and third or fourth harmonic£ 3 or
n=4) in the visible spectral range[69]. It was also found tlzatial choice depends on the
probe vibration amplitud@ and the measurement precision required. However, this topi
was never investigated theoretically. Based on Egs. 6.119%&28, the first quantitative
prediction of the near-fieldto—background signal ratio (NFBR) for different harmonics
and vibration amplitude& is now possible.

For that purpose, the near-field contrast facjaappearing in Eq. 6.23 will be calculated
utilizing the monopole model of the near-field interacti@veloped in Chapter 5. Further,
since no reliable way to determine the faaton Eq. 6.19 has been derived, the reflections
from the surface will be completely ignored by setting- O in both Eq.6.19 and 6.23.
Because both the factorand the reflection coefficieng are bound byc| < 1 and|rp| <1,

their combined contribution must also lie within the unitoté |crp| = 1. Given no other
prior information, the choicer, = 0 could thus be interpreted as an average case, in which
the reflections from the surface neither increase not dsertte near-field and background
scattering.

To calculate the NFBR, the parameters pertaining to thererpatal conditions have to
be specified. Since all measurements shown in this work wademsing a C®laser
operating between roughly = 9um andA = 11um, the wavelength will be set fo~
10um in the calculations. The probing tip will be described Igytiue lengtit = 15um
and the effective length for the near-field interactidn=2600nm. Finally, a typical tip
radius of abouR ~ 25nm will be used.

Fig. 6.5 displays the NFBR obtained with the parameter \&dpecified above for a sample
made of crystalline silicon. We see that the DC background tg; o dominates the overall
signal, being almost two orders of magnitude larger thanahgr component, including
on,o- At the fundamental probe vibration frequerythe near-field and background sig-
nalsoy 1 andog 1 are almost equal when the amplitudles small with respect to the tip
radiusR. The background scattering coefficieny ; increases faster than its near-field
counterparion 1 asA increases, so that the measured scattering coefficieniconsists
mostly of the background terwi 1 for amplitudesA ~ R typically encountered in experi-
ments. FOA < Randn= 2, the near-field signaly , finally exceeds the background signal
o2 by more than one order of magnitude. The ratiagf, to gg > reduces significantly
for larger vibration amplitudes due to the quadratic inseeaf the background, as sug-
gested by Eq.6.1006 , O (A/A)™) [57]. Going to even higher harmonics, the background
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contribution becomes negligible compared to the near-8gjdal under the experimental
conditions investigated her&(A < 0.01).

Finally, it is interesting to compare the predicted NFBRHe experiment. Although the
plots in Fig. 6.5 are intended to provide only a rough estanttie measured NFBR on
Si surfaceon 2/ 0 2 =~ 15 is very close to the predicted NFBR20 in Fig. 6.5(b) for the
same vibration amplitud&~ 25nm as in the experiment. The background sigpa) was
below the detection threshold in the same experiment. Sacdutcome is also consistent
with the predicted NFBR of abouly 3/0g 3 ~ 2000.
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Figure 6.5: (a) Amplitude of the background signal harmswig, (dashed lines, BO..B2)
and near-field signal harmonimy » (full lines, NFO..NF3) forn=0..3 as a
function of the probing tip vibration amplitude. (b) Ratioon n/0s of the
curves form part (a) . The near-field interaction was catedlaising Eq. 5.34
for a Si sampleg ~ 12) and the probing tip raditR= 25nm.
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Figure 6.6: (a) Amplitude of the background signal harmsuig,, (dashed lines, BO..B2)
and near-field signal harmonuay ,, (full lines, NFO..NF3) forn = 0..3 as a
function of the probing tip vibration amplitud&. (b) Ratioon n/0g n Of the
curves form part (a) . The near-field interaction was catedlaising Eq. 5.34
for a resonant SiC sampley= 930cm™1) and the probing tip raditR= 25nm.

After an ordinary dielectric material, the analysis of NFBRI be performed for a near-
field resonant sample. To this end, Fig. 6.6 shows the sam#ses in Fig. 6.5, but for a
resonant SiC sample instead of Si. The background signal iaffected by the change of
the sample, sop p, still loses a factoi /A or about two orders of magnitude per harmonic
n, as expected from Eq.6.10. However, the near-field scagi@oefficientoy n is about
one order of magnitude higher on SiC than on Si and the bauakgrscatteringig  is
proportionally less important. For this reason, a satrgfynear-field-to-background ratio
of about 10 can be achieved already using the first harmonie 1) and very small vi-
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bration amplitudesA ~ 6nm). With the second harmonic, the background is negkgibl
compared to the near-field signal for every vibration armpgiA shown in Fig. 6.6, as was
also confirmed experimentally.

Another important conclusion which can be drawn by compgpFiy. 6.6 and 6.5 is that
the overall signal level remains almost the same, but highenonics are generated with
higher efficiency on a resonant material such as SiC than delecttic like Si. For a
typical tip vibration amplitudéA ~ R, the ratioon ny1 : On,n ON SIiC is as high as 0.7, in
contrast to only 0.25 on Si. This observation indicatesttmatinmodulated (DC) approach
curves for different samples do not simply scale while kegphe same slope. Rather,
their steepness changes so that the higher harmonics oéthediilated signal have larger
amplitudes as the coupling between the probe and the sampieases. At the end of
Sect. 6.2.5, it was suggested that this property of the fiedldrsignal might be used to
suppress the variations in the s-SNOM contrast due to ndofamreflection of light from
the sample and also to eliminate the need for normalizatiail mear-field spectra to a
standard reference material.

6.2.7 Near-field vs. Background Scattering and Disturbances

From Fig. 6.5 and 6.6, it might seem that using a higher harcradways represents a better
choice since the NFBR is increased this way. This would beitrthe absence of noise and
other disturbances in the signal. In practice they set d tovthe signal level that can still be
measured. The quality of the s-SNOM images obtained is fineraltimately determined
by the ratio of the near-field signal to the background antudisinces (NFBDR). The
disturbances are thereby understood to cover all kinds whated interferences with the
measured signal, including the thermal and shot noise dsaw#ie signal distortion due to
the non-linearity of detectors and amplifiers. It also ides other kinds of disturbances,
like capacitive charge pick-ups or inductive cross-taltsen currents in different leads
or cables.

To estimate the influence of the noise on the measured s-SN@¥dl st will be assumed
here that a sufficiently high illumination power can be sigapto bring the detector just
below the point of saturation. The GQasers used in this work were found capable of
providing enough power to allow this, thus justifying thesasption. A very good de-
tection system may provide a dynamic range of about 100dBlyimg that the noise and
distortion floor should be set to 10 of the maximum signal level. The maximum signal
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level is determined almost exclusively by o, making the total background plus noise co-
efficient{,, equal tod, = 0gn+ 10*503,0. The ratioon n/{n Will be used in the following
as an estimate of the NFBDR. At~ 10um, the s for Si and SiC samples is shown in
Fig.6.7(a) and (b), respectively. For lower vibration aityples, best results are obtained
with the second harmonic, whereas the third harmonic shoeildsed if the vibration am-
plitude is large. The border between the two cases shiftaterl amplitude#\ for samples
yielding stronger near-field interaction. It is interegtio note that with the experimental
parameters considered here, the fourth harmonic nevergepis the optimal choice in the
mid-IR because its signal level is closer to the noise floantine second or third near-field
harmonics are to their background counterparts.

1200
1000
800
600
400
200

NFBDR

0 10 20 30 40 50 60 0 10 20 30 40 50 60
vibration amplitude A (nm) vibration amplitude A (nm)

(a) (b)

Figure 6.7: Ratian n/{n of the near-field signaby » to the background and disturbances
{n (NFBDR) forn= 2..4, assuming a detector dynamic range of 100dB. (a) Si
sample, (b) resonant SiC sampte £ 930cnm™1).

It should be noted that the NFBDR shown in Fig. 6.7 is a themakmaximum obtainable
only under ideal conditions and long data acquisition waks. If the illumination power
is not sufficient to take advantage of the entire dynamic eaoigthe detector, or if the
acquisition time is limited due to fast scanning of the sampe noise level might be
significantly higher. If the dynamic range is reduced to 80tt® second harmonic might
provide an advantage over the other choices of the demdalulatdern in a much larger
range of vibration amplitude&, as shown in Fig 6.8(a).

Another interesting comparison can be made between thar@afrand visible illumina-
tion. If the illumination wavelengtidh = 600nm is taken instead af = 10um, the back-
ground scattering becomes a much larger problem. For tagore the NFBDR similar to
Fig. 6.8(a) might be obtained, with= 4 representing the best choice for most tip vibration
amplitudes. However, the accuracy of this prediction isealimited because two assump-
tions of the monopole model are violated in the visible ranigeparticular, there are no



109 6.2 Additive s-SNOM Background

perfectly conducting materials which can be used to maketbleing tips. FOR = 25nm
andA = 600nm, there is also no model spheroid lengtH& whichR <« L < A. For this
reason, the results in Fig. 6.8(a) should be taken with gaulti

Nevertheless, a qualitative comparison between the s-SN@&ding in the visible and
infrared spectral ranges can still be made on this basisb&bleground scattering is much
larger and the probing tips are less efficient as opticalranae in the visible range. Fur-
thermore, strong and sharp near-field resonances suchszsah®iC are expected to occur
only at infrared frequencies because the plasmon resos@maoeetals at visible frequen-
cies are more strongly damped than the phonon-polariteamegses in the infrared. Com-
pared to the conventional far-field microscopy, the improgat in the resolution achiev-
able by a s-SNOM is also much larger for the infrared than lierisible light. For all
these reasons, it is clear that the scattering-type nddrdficroscopy offers much more
advantages when used in the infrared than in the visible vagé range.

NFBDR
O r N W A~ U O

0 10 20 30 40 50 60 0 10 20 30 40 50
vibration amplitude A (nm) vibration amplitude A (nm)

(a) (b)

Figure 6.8: NFBDR for the same probing tip and the sample &$gn6.7(a), but with (a)
dynamic range reduced from 100dB to 80dB, or (b) illuminatieavelength
A = 0.6um and effective tip length = 80 nm instead oA = 10um andL =
250nm.

In conclusion, we have seen that the higher harmonic deratidnltechnique can eas-
ily improve the signal-to-background ratio by several osdef magnitude. However, this
improvement is only possible at the cost of the reduced bigaaoise ratio. As a conse-
guence, an optimal choice of the probing tip vibration atapke A and the demodulation
ordern exists, depending on the illumination wavelength and thgdaresponse. With the
optimal set of parameters and a near-field resonant sampleatio of the near-field sig-
nal to the background and noise may in theory exceed 60 dBaltipe, somewhat lower
values of up to 40 dB are observed due to limited measurenmeatand other sources of
noise such as mechanical instabilities, which have not bredtimded in this analysis.
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6.3 Multiplicative s-SNOM background

6.3.1 Origin of Multiplicative s-SNOM Background

In Sect. 6.2 the light scattered by s-SNOM probing tip wadieitly divided in two compo-
nents: near-field scattering and background scatterings@'two components are coherent
with each other, so the total scattered fielidmeasured at some point in space is obtained
by summing the fielcEn due to the near-field scattering and fidlg arising from the
background scattering to obtaiy = En + Eg.

Since the probing tip periodically oscillates with a freqoagQ, bothEy andEg are peri-
odic functions of time and can be expanded in Fourier series,

Ent) = Y €Enn=Eo Y €"onn and (6.27)
N=—o N=—o0

E _ — eithE _ d eith

() = Z B.n = Eo Z OB,
N=—0o0 N=—o

whereEy is the strength of the probe illumination field and the apprate values of the
scattering coefficientsy n = En,n/Eo andog n = Eg n/Ep are given by Eqgs. 6.23 and 6.19,
respectively. In Sect. 6.2.6, the background scatteriedfictentsog , have been shown to
rapidly decrease in comparison to the near-field scatt@mefficientson  as the index

is increased. By choosing a sufficiently high harmamian theory, the background field
can be made negligibly low.

However, this technique alone is not sufficient to completdiminate the background
contribution from thedetectedsignal [69] because the detectors of light cannot directly
measure the electric field strength. Instead, they produtgubcurrents of voltages pro-
portional to the number of photons they absorb. Yet the nurabghotons striking the
detector is proportional to the light intensityand not to its field strengthr. Given that
the intensityl is a quadratic function of the electric field strengthl(|EZ|), the harmonic
components of the background fiddg inevitably appear mixed with the harmonics of the
near-field scatteringy in the detector output. Because mixing yields pairwise potsi

of the near-field and background scattering coefficients dbtcurrence of the background
signal will be referred to as thaultiplicativebackground interference, also known as the
interferometric background effect [179].

Although the interference of the background and near-figjdad harmonics cannot be
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prevented, its influence on the outcome of the near-fieldasigreasurement depends on
the actual signal detection technique used. In that re¢aodsimple detection techniques
will be analyzed first and demonstrated to be completely drgdy susceptible to the near-
field—background interference. Pure near-field signals can besumea utilizing more
sophisticated detection techniques presented in Sect. 6.4

6.3.2 Non-interferometric detection

The simplest near-field signal detection scheme uses jasigitit scattered by the probing
tip, which is collected and sent to the detector. Such a 4dRips illustrated in Fig. 6.9.

laser

objective beamsplltter

AFM tip o \ detector
' Lock-In
(nQ)

E- EN+EB

Figure 6.9: Non-interferometric detection setup

The fieldEp at the detector position in Fig. 6.9 is equal to the totaltecat! fieldEr which
comprises the near-field and background componértandEg. Substitutingey andEg
from Eq. 6.27, we have

[oe]

Ep(t) =En(t)+Es(t)=Eo 5 € (onn+08n). (6.28)

N=—o
The detector output voltageis proportional to the light intensity O |E3|. The Fourier
series of the output voltageis then
- 2

u="y €=k i ™ (oN m+ OBm)| (6.29)

nN=—o m=—o

with k, being a proportionality constant whose exact values thpemds on the applied
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laser power, detector responsivity, and the propertiee@®fprobing tip and the objective
used for the sample illumination and the collection of thatsred light.

To determine the expansion coefficienisthe identity|Z|> = ZZ* valid for anyZ € C will

be applied to the sum on the left of Eq. 6.29. After expansfdheleft side of Eq. 6.29, the
coefficients of all terms containing the complex exponémti®t should be added together
to get the Fourier coefficient,. The terms proportional td" which corresponds to the
detector output at frequenay2 can be obtained only from the pairwise products of the
form Xp@™ v e 12 wherem—| = nandX,Y can be any oby,0s. There are four such
products for each givemandm:

00

un = ky Z ON,mON | + ON.mOg | + Om0Og | + OB mOy ), (6.30)
M=—oo
with | = m—n. Where more convenientiy _; can be substituted fasy | andog _; for
o, since bothEy andEg are even functions of time because the probe height vamiatio
given by the coQt term in Eq. 5.41.

From Fig. 6.5 one can infer that the terms containigy must be much larger than any
other term not containingg o in Eq. 6.30. Neglecting all but the four terms involviag,
we get:

Un =~ Ky ( 0B,00g n + 08,00N n+ ONnOg o+ OB n0g 0 )- (6.31)

The complex scattering coefficients , and og n can be expanded into real-valued am-
plitude and phase components. If we in this sense subssielfe for oy , andbpe¥n for
OB n, the complex conjugate operator just changes the sign giftasesp, and . This
way we obtain

Un = kybg [bne (Yo~ ¥n) 1 5 ,&(Wo—0n) 4 g d($n—to) | e (Yn—o0) ] (6.32)

which simplifies to [69]:

Un = 2Ky bo [ on coS(Yn — Yo) +Shco ¢n — o) |. (6.33)

Taking advantage of the higher-harmonic demodulation,bdekground harmonic am-
plitude b, can be made much smaller than the near-field signal amplggd&o for a
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sufficiently high demodulation ordex we get

Un ~ 2kaDo$: COS 6 — o). (6.34)

From Eq. 6.34 we see that there is a multiplicative backgiaomtributionbg = |0g o to
the detected signal, regardless of the demodulation ocdeor this reason, all background
artifacts described at the beginning of this chapter cdlreffiect the measured signal even
if the detector output is demodulated at a higher harmontkce@probe vibration frequency
Q.

However, there exists an important difference between ddéige and the multiplicative
background interference which will be explained by examfle this end, let us assume
that the amplitude of the background scattering coefficiyg has changed by 10% for
some reason. In the case of tmeltiplicativebackgroundy = |0 o| in Eq. 6.34, the de-
tected signall, would change by the same amount (10%). Since the backgtwLiadom-
pletely equivalent to the near-field sigrglin Eq. 6.34, the variation in the background can
be misinterpreted as the change in the near-field signaldgdame amount, independent
of the harmonia. In contrast, the same 10% change in &ldelitivebackground would in
general not cause an error in the measured near-field signal ® 10%. Rather, it would
alter the square bracket in Eq. 6.33 h{if), meaning that the actual error depends on the
ratio of s, to by, i.e. the NFBR (Sect. 6.2.6). If we take the values from Fig.t6 estimate
the ratiob,, /s, for A= 20nm, we gebg/sp ~ 100 andb,/s; = 0.05. If the former (= 0)
case, a 10% change in the background would be 10 times ldrgeithe entire near-field
signalsy, whereas in the latten(= 2) case the change would amount to only about 0.5%
s. We can thus conclude that when unsuppressed, the addinkgtound can be much
more detrimental to the near-field microscopy than the iplidative background.

However, there is another source of unreliability contdimeEq. 6.34. The cosine factor
cog ¢n — Yo) might change due to both the background phaseand the near-field phase
¢n [69]. The background phase is an inherently unreliable tityabecause it depends,
amongst other things, on the adjustment of the optical corapts which influence the
illumination profile. Moreover, all reflections from the spl@surface and from the optical
elements such as lenses have the same effect on the detegtadas the unmodulated
background ternog . They can thus be simply added to it, making the exact relatio
between the background phagg and the near-field phag® even harder to predict and
control.
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6 Background-free Detection of Near-field Signals 114

Even if the background phase could be controlled by carafjustment of the optical
components, the near-field phagewould still be determined by the tip-sample interaction
and could therefore change, e.g., due to a near-field resenaks a consequence of the
phase change, the amplitude of the detected signalould be modified. Such coupling
between the near-field signal phase and the measured sigphiade is undesirable since
it can lead to false conclusions about the strength of the-firdd interaction. This topic
will be elaborated further in Sect. 6.5.

6.3.3 Homodyne detection

The shortcomings of the non-interferometric scatterelt ldetection technique described
in Sect. 6.3.2 can be avoided to a large degree by perfornmnigterferometric measure-
ment employing a well defined and controllable referencerbéess illustrated in Fig. 6.10,
the reference wave R interferes with the wave T scatteredi@ytobing tip. Formally,

mirror
e
B~ laser
A
objective

AFM tip o \ detector
' Lock-In
(nQ)

E- EN+EB

Figure 6.10: Homodyne signal detection

there is no difference between the reference and the baskdneave concerning the in-
terference with the near-field signal. We can thus easilgrektEq. 6.34 by adding the
interference term between the near-field scatteffpgnd reference fiel&r = Eorre¥r:

Un = 2Ky Sh [bocos ¢n — Yo) + rr cOSn — YR) ] (6.35)

For efficient suppression of the background tdéggnos ¢, — b), it is necessary to have a
strong reference waveg > byg. If this is the case, the background term in Eg. 6.35 can be
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omitted, reducing, to

In = 2Ky 'RSh COS(¢n — YR) - (6.36)

After obtainingup, it was suggested in Ref. [45] to repeat the same measuremignt
the reference phase shifted Byr = 90, marked as position B in Fig.6.10. From this
measurement a second value is obtained,

Wn = 2Ky rrRSn SIN(¢n — YR) - (6.37)

Having both the sine and the cosine component of a givenesedtfield harmonic, both
its amplitude and phase can be reconstructed. This is mei§f dane by constructing the
complex quantity

Un = Un+iWp = 2k, rrSe(®n—¥). (6.38)

U, is thus proportional to the near-field scattering coefficmn= s,€", with the propor-
tionality equal tok, = 2k,re ¥R, As already explained in Sect. 2.5, this constant needs not
be determined if relative measurements are performed.

The mostimportant advantage of the homodyne detectiomigaé over the non-interferometric
method is the decoupling of the signal amplitugldrom its phaseap,. Owing to the in-
dependent recovery of the scattered field amplitude andeplias homodyne method is
suitable for near-field spectroscopy of both strong and wesakllators such as SiC[63]

and polystyrene[62, 64], respectively.

However, the amplitude and phase measurements by the homausthod are only as ac-
curate as is the approximation made between Eq. 6.35 and3&q.Bhere it was assumed
that the background scattering is negligible with respetié reference wave. In a typical
experiment, the reference wave gets reflected by a flat n{ifigr 6.10), with more than
95% efficiency. On the other hand, it was found that the prliip returns only about
3-5% of the incident light intensity. The ratio of the refece and background wave in-
tensities is therefore close tg: Ig = 25. Although such ratio may seem large enough to
neglect the background, the background influence is agtoalch larger because it is the
field strength that enters Eq. 6.35, not the intensity. SkyceEg is only about 5, the influ-
ence of the background scattering can have a noticeabletropahe measured near-field
scattering coefficient.

The influence of the multiplicative background interferermn the results obtained using
the homodyne detection method can be estimated by compiéwengjgnal amplitud®,
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6 Background-free Detection of Near-field Signals 116

obtained from Eq. 6.38 with the background omitted to theaigimplitudeJ/, obtained
with the background contribution included. The worst-cagpears when the background
and near-field signal phases are equal yie= ¢n. For this case the behaviordf, /U, as a
function of the reference phagg is shown in Fig. 6.11. The error made by reconstructing
the complex scattering signal amplitude via the Eq. 6.38 lmamead out directly from
Fig.6.11. The maximum error in the measured amplitude ofnier-field contrass,
amounts to over-28% and the error in its phagig, to about+16. Such a large error
significantly reduces the accuracy of the near-field contresmsurements.

15
1.2 10
—11 > 5\
|
:\): 1 :'): 0
209 S -5
©
0.8 -10
-15
0 1 2 3 4 5 & 0 1 2 3 4 5 6
YR YR

Figure 6.11: The ratio of complex signal amplitud¢sandU, calculated with the back-
ground contribution included (Eg. 6.35) and omitted (E§6f, respectively.
Shown are (a) the amplitude and (b) the phas®/glJ,, as functions of the
reference wave phasgk for Yo = ¢, andEr : Eg = 5.

Although there exist reference phaggsin Fig. 6.11 for which the amplitude error is zero,
and other phasagg for which the phase error is zero, both errors can never haredted
simultaneously. It is also not possible to attenuate th&dpracind without affecting the
near-field signal because they both originate from the samtgthe probing tip). Although
attenuating them together does indeed increase theHEgati&g, this comes at the cost of
the proportionally reduced near-field signal, which is lyglnfavorable for achieving a
good signal-to-noise ratio. The complete elimination & thultiplicative background
therefore requires more sophisticated detection metlpwdsented in the next section.
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117 6.4 Background-free Detection of Scattered Light

6.4 Background-free Detection of Scattered Light

6.4.1 Heterodyne detection

The first detection method capable of a complete multipliedbackground suppression
was the heterodyne method, introduced in [180] and [58]. sdsua reference wave of
a slightly different wavelength than the light used for prallumination. The reference
must nevertheless be coherent with the illumination, aedlifierence in their wavelengths
must be very small compared to the wavelengths. Only unden sanditions can an
interference between the scattered wave and the referemeehe observed. As illustrated
in Fig. 6.12(a), the required wavelength difference may tmelpced by an acousto-optic
modulator (AOM), exploiting the Doppler shift of light upats diffraction by traveling
acoustic waves. The angular frequency shdi of the light wave is thereby equal to the
angular frequenci of the acoustic waves, times the diffraction ortiefAw = NA). This

is equivalent to a wavelength changedf = A Aw/ w, which for a typical AOM frequency
A ~ 100MHz and a wavelength of e.4y.= 3um, amounts to only one part in about®10

In the heterodyne detection setup shown in Fig. 6.12(a)sitiveal and the reference waves
are brought to interference by using a variant of the Machrder interferometer. Just
like in the homodyne method, the near-field signal intedesgth the background and
the reference wave. However, since the reference and tlkgtmamd now have different
frequencies, their interference with the near-field sigraal be distinguished from one an-
other. In particular, the frequenciést nQ found in the detector output can only come
form the interference between the frequency-shifted esiee wave and the scattered sig-
nal, as indicated in Fig. 6.12(b). This way the multipligatbackground is avoided and the
remaining additive background found at frequendiesnQ can be suppressed by choos-
ing n large enough [69, 181], i.e. by the higher-harmonic demeatiteh method described
in Sect. 6.2.

Formally, the detector output signal demodulated at a #aquA + nQ can be expressed
as [58, 174]
Un = kyrrsng (MW =00, (6.39)

whereys is the phase difference between the mechanical oscillafitime probe and the
sinusoidal voltage driving the probe.

The expression for the demodulated detector output volteg. 6.39 is approximate only


Zhe Fei
Highlight

Zhe Fei
Highlight

Zhe Fei
Highlight

Zhe Fei
Highlight

Zhe Fei
Highlight


6 Background-free Detection of Near-field Signals 118
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Figure 6.12: (a) Heterodyne detection setup from [58], &dhe spectrum of the detector
output signal.

to the extent that the additive background has been nedleci@articular, the multiplica-
tive background is indeed completely eliminated by the toetgne detection technique
because the signal is extracted at the frequentynQ which cannot be produced by the
interference of the near-field and background signals. Hterbdyne technique can thus
achieve the highest degree of background suppression aafiaihgee detection methods
presented so far. Consequently, the heterodyne methatkytie¢ most reliable near-field
images.

However, there are some practical disadvantages of theddgtee method as shown in
Fig.6.12. First of all, the phase bk, depends on the phase of the probe vibration, which
can change depending on the mechanical interaction of ttee@nd the sample. Second,
AOMs typically operate in the VHF frequency range (3800 MHz), where the light de-
tectors typically provide a lower signal-to-noise ratianhn the sub-MHz range occupied
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by the near-field signal alone. Further, the frequency athitieam at the output of the
AOM is separated from the undiffracted beam by only aboutnéhradians, requiring
an additional beam expander and making the setup less confaiitionally, the output
angle of the frequency-shifted beam changes with the wag#ie so the setup must be
re-adjusted for each selected spectral line. The AOMs dipgrin the infrared are opaque
to visible light so the optical alignment is further hampkby the unavailability of a pilot
beam. Finally, the commercially available AOMs cover onlinaited portion of the IR
spectral range.

Although some of the aforementioned problems can be avdit&®?], this can only be

done at the expense of increased complexity and cost of thp.s&n any case, the im-
plementation of the heterodyne method is a challenging tesecially for the infrared

spectroscopy applications. As a consequence, no sucksgsfiiroscopic near-field mea-
surement using the heterodyne technique has been reportad s

In the next section, a simpler alternative to the heterodyeéhod will be presented. It
provides the solution to all problems mentioned above wigtaining the same degree of
the background suppression.

6.4.2 Pseudo-heterodyne detection

A new method for background-free s-SNOM signal detectiomtioduced in this sec-
tion. The method is based on the sinusoidal phase modulatitive reference wave and
provides a complete multiplicative background eliminatand permits the simultaneous
measurement of the near-field signal amplitude and phasee $he reference wave is
modulated and not shifted in frequency, this method is knasvthe "pseudo-heterodyne”
method [183]. Fig.6.13(a) contains a schematic representaf the pseudo-heterodyne
setup as implemented in [173].

It is in essence a Michelson interferometer configuratioth @ses only one beam splitter
and a vibrating mirror. It is therefore much easier to impdatthan a heterodyne setup.
Also, the required components are readily available oweetttire near-UV to far-IR spec-
tral range. Furthermore, the vibrating mirror can be drikgmpiezoelectric actuators with
kHz frequencies and thus leave the useful signal in the sHiz-k&inge where light de-
tectors offer a higher signal-to-noise ratio compared ts¢hrequired by the heterodyne
technique.
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Figure 6.13: (a) Pseudo-heterodyne detection setup, gritidlschematic representation
of the corresponding detector output spectrum.

It now remains to be explained how the near-field signal i®vered by the pseudo-
heterodyne technique and how the background interferartbelieby avoided. This can be
best done by analyzing the detector output spectrum, sdieiyshown in Fig. 6.13(b).
Such a spectrum is a result of the interference between tisepimodulated reference wave
field Er described by

Eg = kep €Yc0sSMU) (6.40)

and the total scattered wave fidig = Ey + Eg, described by Eq. 6.28,

Er(t)=Eo Y orne™™. (6.41)

nN=—o

The angular frequenciyl in Eg. 6.40 denotes the reference wave phase modulation fre-
guency, and the anglestands for the phase modulation amplitude (also know asitasep
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modulation depth). The complex reference wave reflectiffiocient p = rre¥= has a
magnitude'r and also comprises the phase offggtthat accounts for the average optical
path difference between reference and signal waves.

In order to calculate the amplitudes of the spectral comptsne the detector output, the
Fourier decomposition oEgr must be known. The Fourier expansion coefficients of a
phase-modulated field were already encountered in SecE§.5.9. In the same manner,
the coefficientgn, in the Fourier series of interest here,

[ee]

Er= Z Pneith, (6.42)
m=—o
are equal to
Pm = rRIm(y) € ¥RHMT2, (6.43)

It should be noted that the fundamental angular frequéhawolved in the Fourier expan-
sion ofEr in Eq. 6.42 must be different from the frequerfeyn Eq. 6.41. The interference
of the two fieldsEr andEr then yields signal at frequenciegm = nQ + mM. If the ref-
erence wave modulation frequenigyis thereby lower than the tip vibration frequernQy
each of the scattered signal harmonics with frequenaigsn > 0 splits into sidebands
containing frequencieg, m = nQ + mM, depicted in Fig. 6.13(b).

In contrast, the detector output spectrum with no referevenge contains only exact mul-
tiples nQ of the probing tip vibration frequency. Those are the fremues where the
multiplicative interference between the near-field andkgeaund signal is found. With
the phase-modulated reference, the multiplicative bamkgpt still appears at the same fre-
quenciesvh o = NQ, but not at the sideband frequencigsm = NQ +mM, n,m# 0. By
extracting the signal from the sidebands which contain th&ty-modulated signal, the
multiplicative background interference is thus completaloided. This is in a full anal-
ogy with the heterodyne method, where the same effect iaetiiby demodulating the
detector output signal at frequencigs= A+ nQ.

In addition to the elimination of the multiplicative backgind interference, the pseudo-
heterodyne approach also enables the simultaneous messuref both amplitude and
phase of the scattered field’s harmonics. This can be donerbbiaing the measured sig-
nal at two frequencies, m andv, | wheremis an even antlan odd integer. To demonstrate
this, let us first derive the amplitudg m of the detected signal at a frequengy.o mo-
Quite generally, the detector outpwis given by the intensity of the light resulting from
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the interference between the scattered fieicand the reference fieHg:

2
U=KIEr +Erf =ki| 3 ora€"™+ 3 pne™) . (6.44)
N=—o

m=—o0

The detector output amplitudg m demodulated at a frequeney ,m = nQ +mM is com-
prised of the complex coefficients ,, found in terms of the fornttn,mei(”Q”“'V')t obtained
after expanding the left side of Eq. 6.44. With the aid of thenitity |Z|?> = ZZ* we see
that the coefficients, m can only be the products of the forof np* ,, or a{fnpm. Since
bothEy andEg are even functions of time, we can writg _, = ot , andp*, = p,. The
detected signal amplitude m, at the frequencyn..omo is thus equal to

Unm = Ku (OT nPm+ 0T nPm); (6.45)

Substitutingom from Eq. 6.43 and expressing the complex coeffic@rg asor n = smei Ptn
we obtain

Unm = 2KurRIm(Y) $,n COS ¢t,n — Yr — M1T/2). (6.46)

From EQ. 6.46 it is clear that the successive lines in a siktlaae in alternation propor-
tional to the real part (cos) and imaginary part (sin) of tbenplex Fourier coefficient
T,. In particular, the real part is obtained for ev@nand the imaginary part for odah.
Consequently, the complex scattering coefficient, can be recovered from two signal
amplitudesu, m andup| as

Un,m . Uny )’

07 = ko (o +i T

AEVRERTE (6.47)

wherekp = % andm = 0 is an even antlan odd integer.

Eq. 6.47 simplifies even further %,(y) is made equal tg(y) by a suitable choice of the
modulation deptty. Forl =1 andm = 2, the required modulation depth obtained from
Ji(y) = Jo(y) is y12=2.63. In the experiment, such modulation can be obtainaddrgting
the reference mirror with an amplituddr = %27‘—71 ~ 0.21A. The scattering coefficiemtr

is in this case just

oT (Un2+iun1). (6.48)

n= —L
T Ai(n2)
As already explained is Sect. 2.5, the value of the cons{anbntained inkp needs not
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be determined for relative contrast measurements usuaifpnmed in the near-field mi-
croscopy. It is sufficient to consider just the complex atapleU, O oy, of the detector
output signal, defined as

Un=uUn2+iUns. (6.49)

As long as the experimental conditions are kept constaatptbportionality constant be-
tweenUp and oy, remains unchanged. Finally, taking advantage of the hiphenonic
demodulation, the background contributiog, to the overall scattering coefficieotr
can be made negligibly small. In that case we hew@ = Onn+ Ogn ~ Onn, SO that the
measured complex amplitutly is proportional to the pure near-field scattering coefficien
onn. The desired near-field scattering coefficient amplitsidis then proportional to the
modulus ofU,, and the phaség,, is equal to the argument of the complex valle

6.5 Experimental Comparison of Detection

Techniques

After the theoretical presentation of the known s-SNOM d&be methods, in the follow-
ing it will be experimentally demonstrated that the psebdterodyne method succeeds
in a complete multiplicative background elimination, wé&s the non-interferometric and
homodyne interferometric detection schemes do not. Foresoance, the schematic illus-
tration of the three detection techniques is provided irntopeow of Fig. 6.14. The bottom
row of Fig. 6.14 contains the corresponding detector ouspettra in the vicinity of the
probe vibration frequencg, recorded in the absence of the sample. The frequénegs
equal to about 30kHz and the reference wave modulation &M was set to 400Hz.
The doubly modulated signal resulting from the interfeeehetween the background and
the reference wave was measured by a MCT photodetector @€alechnologies model
KMPV-0.2-J1/AC) which had its maximum responsivity arouhe wavelengtih ~ 10 um,
emitted by the tunable CQaser used in this experiment. The experimental spectrnarsho
in the bottom row of Fig. 6.14 were calculated via the Foutiansform of the recorded
photodetector output voltage.

The experimental spectra for each of the three detectiohadstin Fig. 6.14 nicely con-
firm the theoretical predictions from the preceding two isast. In particular, we see that
the non-interferometric method and the homodyne methdd gignal in the detector out-
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Figure 6.14: Example signal spectrum obtained using @ffedetection methods: (a) non-
interferometric intensity detection, (b) homodyne inteoimetric detection,
and (c) pseudo-heterodyne interferometric detection.

put only at the exact multiples of the frequerRy marked by squares in Fig. 6.14(a) and
(b). In the case of non-interferometric detection, thisaigs the interference product of
the scattered field componeBt n and the background field compondfs . With ho-
modyne detection, the detector output signal at the frequeq is a superposition of the
interference between the scattered field compoBgprtand both the reference fieltk and
background scattering fielek o (cf. Eq. 6.35). UnlesEr > Eg o, the homodyne measure-
ment of the scattering signal thus incorporates a systeragtrr, investigated in Sect. 6.3.
The experimental manifestation of this effect is shown ig. Bi15(c) and described later
in this section.

With the pseudo-heterodyne method, the near-field sigmatmnstructed from two differ-
ent frequenciennQ + 1M andnQ + 2M. These two frequencies are marked by rectangles
in Fig. 6.14(c) and (a). From the part (a) it is evident thasigmal is present at those two
frequencies when a non-interferometric measurement fenpeed, apart from the noise.
The multiplicative background can therefore not affect pseudo-heterodyne measure-
ments since it appears only at frequenci€s not used for signal reconstruction with the
pseudo-heterodyne technique.

To demonstrate the impact of the multiplicative backgroandhe s-SNOM images, a SiC
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sample exhibiting a sharp structural transition from 4H kbd@ystal structure is imaged
utilizing all three detection methods described abovesBample was chosen because it
simultaneously provides a moderate contrast both in thditude and the phase of the
near-field signal. This contrast is caused by slightly défe dielectric properties of the
4H and 6H SiC polytypes. Measuredat= 10.63um, it amounts to about 20% in the
amplitudes, and 30° in the phas¢,[67]. A more detailed examination of the near-field
spectra obtained with the same sample is presented in Sgct. 7

Fig. 6.15(d) shows an image of the 4H-6H SiC polytype tramsibbtained by the pseudo-
heterodyne method with three different reference phegga sequence, designated as A,
B, and C. The total change in the reference phaséom A to C was about 180° and was
achieved by applying a voltage offset to the piezoelectrici@or driving the reference
mirror. Apart from the reference phageg, all other settings were left unchanged. Since
neither the amplitude nor the phase contrast between th@@y@ypes changes agr is
varied in Fig. 6.15(d), this experiment provides evideea the multiplicative background
interference has indeed been successfully eliminated.

Figure 6.15: (a) Topography of a 6H-4H SiC polytype transitiexhibiting az 2nm height
step generated in the process of sample surface polishenpdlifferent hard-
ness of 4H and 6H SiC polytypes. (b-d) Second-harmonic algignal from
the same sample obtained by (b) the non-interferometrjdidmodyne and
(d) pseudo-heterodyne signal detection techniques.

When this is not the case, an image like Fig. 6.15(c) may bailodd. It contains the same
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SIiC polytype transition, but imaged using the homodynedite. The experiment was
performed under the same conditions as before, exceptdariltinating mirror which was
replaced by a stationary one. To obtain the cosine and tbeesmponents of the measured
signal harmonic, each line was scanned twice, With- A /8 shift of the reference mirror
between the two passes. With three different initial rafeesphase offsetgr in sequence
(Fig. 6.15(c), parts A-C), three different amplitude an@gé contrast between the 4H and
6H SiC polytypes are obtained. Furthermore, the contrasti@n turns out to be strong
enough to cause even a slight contrast inversion in part A.

Finally, the non-interferometric detection was perfornmedhe same setup. To this end,
the reference beam was simply blocked. Although the meammewas performed under
the same conditions as before, the resulting image of the sample area, Fig. 6.15(b) dis-
plays an inverse amplitude contrast between the two SiGymdg compared to Fig. 6.15(d).
The origin of such contrast inversion should be sought inBfe5.34. It contains the co-
sine factor co§pn, — Yp) which translated the phase difference into the amplituarast
so that no definite conclusion about the near-field signalbmaneached based on such
measurements.

In conclusion, we have seen that the non-interferomettieafi®en method is not suitable
for near-field microscopy of samples exhibiting variatieamghe near-field signal phase.
The homodyne method is significantly better in that regadliann fact able to measure
distinct optical resonances as shown in [63] and [64]. ,Shk homodyne method is not
sufficient for near-field imaging of weak optical contrasiich contrast may arise from
e.g. structural differences between isomers or polytygebe same material, or from
different materials with closely separated resonances.s&ch application, the pseudo-
heterodyne method should be used since it succeeds in a e@mpultiplicative back-
ground suppression. Furthermore, the pseudo-heterodwgtieoch enables simultaneous
measurement of the near-field signal amplitude and phass,rdducing the image ac-
quisition time by a factor two compared to the homodyne methim comparison with
the heterodyne s-SNOM, the phase-modulation techniguade® the advantage of sim-
pler and more compact experimental realization togeth#r thie applicability in a much
broader spectral range.



7 Crystal Structure Mapping by
Local Phonon-Polariton

Spectroscopy

7.1 Introduction

Infrared spectroscopy is a powerful technique for deteatiam of the chemical and struc-
tural composition of various organic and inorganic matetiased on their spectral "finger-
prints”. Infrared spectral fingerprints reflect the enesgiévibrational modes in molecules
and crystals which are highly specific for the given materidie energies of vibrational
modes mostly lie in the 30meV - 400meV range, coinciding roygvith the mid-infrared
spectral region (about2um to 30um).

In order for a given vibrational mode to be observable inardd spectroscopy, the cor-
responding chemical bond must possess at least partidfly ploaracter. If this condition
is satisfied, photons with energy close to the eigenfrequehsuch vibrational mode are
efficiently absorbed, and a minimum in transmission thraingrsample occurs. Formally,
this effect can be described by an increase in the extinctiefficientk = im(,/€), where

¢ is the dielectric function of the material. The Lorentz datdr model in the form of
Eq.3.11 can be successfully applied to predict the behafithe dielectric functiore
around the vibration mode eigenfrequency provided thdlatmi strengthf and damping
y are known.

Particularly interesting is the case of polar crystals vehlagtice vibrations couple to the
light so strongly that the dielectric functianturns negative in a limited frequency range
above the eigenfrequenay, as shown in Fig. 3.1(a). This region, known as the residual
or Reststrahlerband, is bounded by the transverse and the longitudinatapthonon
frequencies defined in Sect. 3.3. Within the Reststrahler btne reflection coefficient
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rp=(v€—1)/(v/€+1) is close to unity and almost all light is reflected from the pten
as shown in Fig. 7.1(a).
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Figure 7.1: (a) Far-field reflection coefficient= (1/€ —1)/(v/€ +1) of p-polarized EM
waves normally incident on a SiC crystal. (b) Near-field sigsy emitted by

an s-SNOM probing tip in contact with SiC crystal surfacermalized to the
near-field signaby on an Au surface.

Note that Fig. 7.1(a) applies only to the reflection of praggawy waves under normal inci-
dence. In Sect. 5.2 it was shown that the near-field intenadtetween a s-SNOM probing
tip and the sample is mediated by evanescent waves whicktrefith a different reflec-
tion coefficient8 = (¢ —1) /(¢ +1). The mutual interaction between the tip and the sample
finally results in a scattered light spectrum like the oneaxshim Fig. 7.1(b), calculated ac-
cording to Eq. 5.29.

A prominent feature of Fig.7.1(b) is the sharp peak withia Reststrahlen band. In
Sect. 3.2, it was argued that such behavior should be traaadtb the resonant excitation
of surface phonon polaritons. From Fig. 7.1(b), we can agiecthat the near-field phonon-
polariton resonance is much sharper than the far-field Raktsn band which comprises
it. Considering in addition the huge improvement in the hetson compared to the far-field
IR spectroscopy [45, 62], near-field infrared spectrosadpgrly represents a very sensi-
tive technique for material identification. In that regatdias already been shown that the
infrared s-SNOM can identify materials exhibiting neatefiphonon-polariton resonances
[63]. Furthermore, even in the absence of a polariton resmnas-SNOM can distinguish
and identify materials based on their IR absorption linssleanonstrated for two polymers
in a blend [46] and single viruses [65].

In each of the above cases, the material identification wea®npeed by recording the
near-field spectrum of the sample and comparing it to therétieal prediction. In the
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following, it will be shown that the same procedure can beliadpto differentiate be-
tween crystals of the same chemical composition but diffieceystal structure. Although
near-field optical contrasts due to differences in crydtaicture are rather weak, the re-
quired degree of sensitivity can be achieved by exploitmgghonon-polariton near-field
resonance. This enables the crystal quality degradatienicdadiation damage to be mea-
sured and the polytypes of the same material to be distihgdiand identified by s-SNOM.
The former can be done in a quantitative way by using the moleapodel introduced in
Chapter 5, and the latter additionally requires the use @pteudo-heterodyne detection
method from Sect. 6.4.2 in order for the measured opticatasts to be reproducible.

The application of s-SNOM for crystal quality mapping andypgpe identification will be
demonstrated for SiC crystals. The primary reason for periftg the experiments with
SiC is its phonon-polariton resonance aroung 10.75um, lying within the wavelength
range covered by tunable GQasers. This greatly facilitates the experiments since CO
lasers represent the most powerful and reliable sourcesh&frent mid-IR radiation. Be-
side the experimental convenience, SiC is on its own a potisanaterial for high-power
and high-temperature electronic applications[184]. Aebsurvey of its most important
properties will thus be presented first.

7.2 Properties of SiC

7.2.1 Electric Properties

SiC is an exceptional semiconducting material able to meitai semiconducting behav-
ior even at temperatures above 500°C [185]. This charatiteris a consequence of
the wide bandgap of SiCx{3eV) and the resulting low intrinsic carrier concentration
(~ 10~%cm™1). Combined with the high breakdown field @ MV/cm) and excellent ther-
mal conductivity & 5W/cmK), this property permits SiC to sustain large powersitees
[186]. The high breakdown field and the wide energy bandgai©fenable much faster
power switching than in silicon power-switching deviceshaan equivalent power rating
[187]. Finally, all aforementioned characteristics tdggtgive SiC an additional advantage
over Si when applied in high-power radio-frequency (RFphailggeneration and amplifica-
tion.

However, the huge application potential of SiC still rensaumexplored because of the
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several difficulties encountered with SiC electronic desitabrication. One of the main
obstacles, the poor quality and high price of SiC wafers htrigive been recently resolved
by a new "repeated-face” (RAF) SiC crystal growth method [188]. Still, the ulating
oxide layer on SiC needed to fabricate MOSFET devices is kniovbe thermally unsta-
ble and of unreliable insulation properties. This obstaee be avoided e.g. by using
the Metal-Semiconductor Field Effect Transistor (MESFE&$ign [186, 189] which does
not require an insulating oxide layer and also allows forsaefiaoperation than MOSFET.
Finally, the contacting and other supporting electrongrednts which can withstand high
operating temperatures of SiC are being steadily improvete ongoing efforts to de-
velop and optimize SiC electronic devices can thereforefiginom an analytical tool that
enables non-destructive high-resolution imaging of @lystructure and doping profiles.

7.2.2 Polytypism

SiC properties such as energy gap or intrinsic carrier aunaton mentioned above may
significantly differ from crystal to crystal depending orethexact structure. Apart from
the possible defects in the crystal lattice, there exis@tians in the structure of perfect
SiC crystals due to different stacking sequence of layensgabne direction in space. The
freedom in the stacking order is a consequence of the faididheach 2-D layer of densely
packed spheres designated by A in Fig. 7.2, there are twabd@ssrangements of densely
packed spheres on top of layer A. These two arrangementalaked B and C in Fig. 7.2.

)

Figure 7.2: Two possible arrangements B and C of closelygzhsbhere layers on top of
the layer A.

All crystals with the same stacking sequence, i.e. with #maesordering of layers A, B,
and C, belong to the sanpolytype. More than 200 SiC polytypes are known, of which
the most common ones are the cubic polytype 3C, hexagonglypek 2H, 4H, 6H and
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rhombohedral polytype 15R. Stacking sequences of the diustdf them are illustrated in
Fig. 7.3 which displays the cross-sections through thetaﬂ;agraphic(llfO) plane. This
plane is defined by the c-axis of the crystal and the base &heeahted in Fig. 7.4.

c—axis

> 2.90..%.

ABCABC ABCABC ABCABC ABCABC
(a) 3C-SiC (b) 2H-SiC (c) 4H-SiC (d) 6H-SiC

Figure 7.3: Stacking sequence of Si-C layers in the mosti&etly encountered SiC poly-
types. Shown are cross-section along the crystallografiii20) plane with
the base line designated in Fig. 7.4 below. Larger circlpsesent Si atoms,
smaller disks stand for C atoms.

Figure 7.4: Projection of atom positions onto {{#®01) plane in layers denoted by A, B,
and C in Figs. 7.2 and 7.3. Full lines are the crystallograjgixes, and the
dashed line represents the base line of cross-sections1shaias.

Properties relevant for electronic applications are giveiable 7.1 below for the three
technically most interesting SiC polytypes: 3C, 4H and 66t.domparison, corresponding
properties of Si are also given in the same table.
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| | 3C-SiC | 4H-SiC | 6H-SIC| Si |
Bandgap (eV) 2.4 3.26 3.03 1.12
Breakdown field (MV/cm) >1.5 3.0 3.2 0.3
Thermal conductivity (W/cmK) 3.2 4.9 4.9 1.3
Intrinsic carrier concentration (cm) | 5x10° [ 5x10°9| 10°° 1010
Electron mobility (cni/Vs) 800 |lc: 900 | |/c: 60 | 1430
1c:800 | Lc: 400
Hole mobility (cnf/Vs) 40 115 90 480
Saturated electron velocity (16m/s) 2.5 2 2 1

Table 7.1: Comparison of electrical properties of SiC andt$i = 300K.

7.2.3 Anisotropy

Regarding the optical properties of SiC, it should be noteat all SiC polytypes with
the exception of the cubic 3C polytype are anisotropic. THead 6H polytypes of SiC
presented here are both uniaxial like many other techyicaliévant crystals including e.g.
silicon. This enables the formalism from Sect. 5.3 to be i@pghere. Fig. 7.5 shows the
difference between the cuts perpendicular and paralldig¢ataxis, calculated for a 4H-
SIC crystal using the monopole model (Eq. 5.29) with the eespe near-field reflection
coefficientsB, and 3| given by Egs. 5.37 and 5.39. A slight resonance shift of about
2cm 1 is noticeable both for the DC signal and the signal demoddlatt the second
harmonic (22).
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Figure 7.5: Near-field signal from a 4H-SiC crystal cut pawtieular to the c-axis (full
line) and parallel to c-axis (dashed line), calculated etiog to the monopole
model. Shown are (a) the signal emitted by a stationary s18@bing tip in
contact with SiC crystal, and (b) the second-harmonic derabeld signal from
a vibrating tip (b). The values are normalized to the eqentsignal above an
Au surface.
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According to the theoretical prediction in Fig. 7.5, thergglevel in the resonance max-
imum does not depend on the cut direction. Given that theotmgy was treated only
approximately here, it is possible that a more completestigation will yield different
results. No experimental data exists in this regard, so fleete of anisotropy on the
near-field signal obviously require a more systematic itigaton in the future. In the
remainder of this chapter only crystals cut perpendicudahe c-axis will be compared,
thus avoiding the possible scattering signal variatiorestdudifferent orientations.

7.3 Structural Contrasts in lon-Implanted SiC

7.3.1 lon Implantation in SiC

The study of the near-field contrasts arising from diffeemnm the crystal structure re-
quires a modification of the structure to be performed withofluencing the chemical
composition of the sample. One possible way to achieve swmgbtsral modifications is
to damage the crystal by highly energetic ions impinginghendurface of the crystal. The
ions cannot be stopped immediately at the point of impadi the surface of the crystal,
but they gradually lose their energy in a series of collisianth the lattice. Thereby the
atoms in the crystal lattice can be displaced from theirahgositions, developing point
defects in the lattice. Since the incoming ions can be geatt® random directions after
each impact, the distribution of ion end positions is quienplex. In general, random
deviations of ion trajectories from a straight line in thgstal are known as straggling.
The average final position of implanted ions strongly degesdthe ion mass and energy,
with lighter and faster ions exhibiting larger stragglid®0]. If the ions are light and fast
enough, they are eventually stopped far below the surfaceveMer, the damage to the
crystal lattice close to the surface still remains as theseqnence of the implantation, of-
fering the possibility to investigate the effects of degmngccrystal quality on the near-field
signal without a change in the chemical composition of thi&en.

In the experiment presented here?Béons with an energy of 60keV were used to achieve
the desired effect. The implantation was performed in ageduon beam facility by R.
Wernhardt at the Ruhr-Universitat Bochum, Lehrstuhl fliigawandte Festkorperphysik
The expected distribution of Be ions upon implantation i@ $ias calculated using SRIM
software (Stopping and Range of lons in Matter, [191]), mgvén average depth of stopped
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Be ionsZ = 300nm and the average stragfl& = 100 nm. Monte-Carlo-type simulations
of the same experiment using the TRIM code [191] yield sim#ésults, withZ = 275nm
andAZ = 75nm. The calculated concentration of Be ions as a functicimeodepth below
the SiC crystal

0]

(o))
—
\

N
—
\

lon concentration (a.u.)
=
|

Oow

100 200 300 400
Depth (nm)

Figure 7.6: TRIM-calculated concentration of implante#®@ Be?t ions as a function of
depth below the SiC crystal surface.

Given the total B&" ion dose of 18°cm~2, the concentration of Be atoms within the first
100 nm below the surface amounts to only about 60 Be atoms le@msi and C atoms
according to the TRIM simulation, and is thus negligible.aAsonsequence, any near-field
optical contrast observed between the implanted and uaimgxd areas of the crystal can
be attributed with high certainty to the differences in tingstal structure, and not to the
chemical composition of the material.

7.3.2 Near-field Infrared Images of FIB-Patterned SiC

The focused ion beam (FIB) implantation allows arbitrarylamtation patterns to be re-
alized on the surface of the crystal. This feature was etqaldb facilitate the comparison
between the near-field response if the ion-beam damagechtaud 5iC crystal. For this
purpose, the pattern shown in Fig. 7.7 was "drawn” on theasearbf a 6H-SiC crystal cut
perpendicular to itg-axis and polished prior to the FIB implantation. The FIBtpmed

crystal was then imaged in a s-SNOM, using the homodyne skgsqribed in Sect. 6.3.3.
A Ti-Pt-coated probing tip (MikroMasch, model CSC37/Ti-Rtith the resonance fre-
guency of abouf2 = 30kHz was used in the experiment. The tip radius was spedfied
manufacturer to be aboRt= 35nm, and the tapping amplitude was seAte 25nm. Since

s-SNOM is based on the atomic force microscope (AFM), it éssathhe sample topography
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to be recorded simultaneously with the optical scatteriggad. The information provided
by s-SNOM optical and mechanical channels will be now comegbérefore proceeding to
the near-field infrared spectra.

5Hm

Figure 7.7: Pattern created in 6H-SiC crystal by focusedoeam implantation of 60keV
Be?t ions. The area imaged in the experiment is delineated byl#uk lpect-
angle.

The experimentally obtained topography image of the FIBgpaed SiC surface is shown
in Fig. 7.8(a). Obviously, the topography image reveattelinformation apart from the
10-20 nm deep scratches produced in the process of crystatsyolishing. A slight cor-
relation between Fig. 7.7 and Fig. 7.8(a) is a consequenc®tdrial expansion (swelling,
[192]) due to increased disorder in the crystal. Howeveg, likight variations due to
swelling would be hard to notice without looking at the impgkion pattern (Fig. 7.7),
and the transition between the implanted and unimplantakas so blurry that the small
implanted squares are not recognizable at all. The medigrtiase, shown in Fig. 7.8(b)
reveals just the polishing scratches, thus providing egss information than the topogra-
phy.

Fig. 7.9 contains the simultaneously recorded optical er@gtained by demodulating the
detector output signal at the second harmonic of the tapfreguency (22 ~ 60kHz)
obtained with the C@laser tuned to the wavelengih= 925cnt L. From Fig. 7.9 itis clear
that the optical signal reveals much more information themtbpography. Especially the
amplitude image in Fig. 7.9(a) reveals every detail of thplanted structure from Fig. 7.7.
The optical phase image in Fig. 7.9(b) also resembles thiamtgd pattern, but the contrast
is much weaker and less clear than in the case of the optgradisamplitude. Interestingly,
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Figure 7.8: Height (a) and tip vibration phase (b) image ef EB-patterned SiC. Image
size: GUMXK6 UM

exactly the opposite situation is found in the optical amuple and phase images at another
wavelengthA = 899cn1?, as shown in Fig. 7.10.

The reason for this behavior of the scattering signal as aslthe appearance of bright
edges in the phase image in Fig. 7.10(b) will become cleanvthe complete near-field
spectra are examined in the next section.

7.3.3 Near-field Spectra of lon-implanted SiC

The complete near-field signal spectra will be extractedat flifferent positions marked
as A,B,C and D in Fig. 7.11. These four positions comprise twexposed areas (A and
B) and two areas exposed to the ion beam (C and D). Howevdn, afaithe four areas
has received a different effective implantation dose, aseaconcluded from the different
amplitudes of the signal in Fig.7.9(a) at each of the pas#ié-D. The origin of this
difference is explained below.

Starting with the area D, we can assume it has received adsé df 18°cm~2. However,
this dose consists of the ions which hit the SiC surface withe region D as well as
those which hit the surrounding area but recoil into D. Adaag to the TRIM simulation,
the average lateral stragghéX of 60 keV B&* ions normally incident on a SiC surface
is about 90 nm, with significant number of ions stopped at erdditdistances as large as
X =250nm away from the entry point. In addition, a focused icarb@ecessarily contains
ions incident under a range of angles around the normal wiantributes to an even larger
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Figure 7.9: Near-field optical images of focused-ion-beaattepned SiC. Shown are
the demodulated second harmonic signal amplitgdé) and phase. (b)
recorded ato = 925cnt L,

lateral straggle. Finally, the ion beam focus has a Gaugsiaiie with a finite width, not
guaranteed to be better than 200nm FWHM in this experimed®][1 All this effects

average out on a large implanted surface like the area D,diuhan area like C which is
surrounded by unimplanted regions. The damage inducecdyniplantation in the region
C is thus lower than in the region D.

Since there is an amount of ions "missing” in the region Chbiiously ended up in the
surrounding regions similar to the one marked by B. For théson, the region B accumu-
lated some damage from the ions targeted at the region Caresgonse will differ from
the completely unimplanted SiC. Of the four marked regionsy the region A is far away
from any implanted regions and can be assumed to be free afaimage to the crystal
structure.

One important consequence of the above effects are bludgeseof both large and small
squares in Figs. 7.9 and 7.10. In Sect. 7.6 it will be proveslithindeed a consequence
of the implantation process and not the s-SNOM resolutiont Isince under different
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Figure 7.10: Near-field optical images recordedvat 899 cnT. Shown are the demodu-
lated second harmonic signal amplitusdga) and phase- (b) .

Figure 7.11: Scanned area of the implanted pattern from7Eigwith marked areas A-D
where the near-field spectra are extracted.

implantation conditions much sharper edges can be achieved

Before the spectra can be assembled from single scans, éveytth be normalized to a
signal on a reference material (see Sect. 2.5.1). Sincder@nee material was available in
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the scanned region, the normalization had to be performedaisteps. First, the spectrum
of unimplanted SiC was obtained from a separate measuremehe same crystal but at
a different location, close to a 50nm thick Au film. The soabéd spectrum was then
taken as the normalized spectrum of the unimplanted SiCarrégion A. The signal in

other areas (marked B-D) was then scaled at each waveles@that their ratios to the
signal in the area A remain the same as measured in the exgerinhe final result is

shown in Fig. 7.12.
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Figure 7.12: Second-harmonic near-field spectra of SiC &amijth different B&* im-
plantation doses A-D.

From Fig. 7.12 we see that the magnitude of the near-fielcheesme diminishes rapidly
with the damage to the crystal lattice. A shift of the resam@amaximum to lower fre-
guencies with the increasing ion dose seems to take placeslisbut it cannot be di-
rectly observed due to the missing gl@aser lines in the range betwean= 905cnt ! and
w=920cnTl,
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The phase spectra in Fig. 7.12(b) exhibit a decreasing slefgbe implantation dose in-
creases. This is an indication of broader and less prondums®nances, consistent with
the conclusions drawn from the amplitude spectra. The meavilty implanted region
(D) has the highest phaglp p aroundw = 900cnt . Due to its broad resonance, the
total phase rotation in the region D is the lowest of all inigeged regions so the signal
in the region D has the lowest phasesat= 940cnT 1. The crossing with the phage a

of the unimplanted region A occurs around the unimplanté&tirfSsonance maximum at
w = 925cnT?, thus explaining the large amplitude, but small phase aeshin Fig. 7.9.
The phase signal, ¢ of the small implanted squared (region C) crosges at a different
wavelength ¢ ~ 930cnT?), so it does not lie between the phages, and ¢, 4 in the
frequency region betwean ~ 920 cnt ! andw ~ 930cnT . This explains the appearance
of bright edges in the phase image in Fig. 7.10(b).

7.4 Quantitative Determination of SiC Crystal
Quality

The spectra in Fig. 7.12 display a clear trend towards a leroacd weaker resonance as
the damage to the crystal lattice increases. It is therefoveous that there is a correlation
between the near-field spectra and the structure of theatryis express this relationship
in a quantitative way, a theoretical model capable of repcoty the measured values
sufficiently well is required. This was the principal motiem for deriving the monopole
model in Chapter 5. The monopole model in the form of Eq. 5.8W& employed here to
determine the structural composition of SiC most consistgth the observed near-field
spectra in the regions A-D.

7.4.1 Effective Medium Approximation

As the first step towards a quantitative statement aboutahemplantation damage in
SIiC, the amount of damage needs to be related to the dieléatrction of the material.

In general, a composite medium made of two different mdtegan be considered as
a homogeneous material for the purposes of far-field spemipy if its components are
mixed on the scale much smaller than the wavelength. In theegbof s-SNOM, the field

is confined to a volum¥ roughly equal to a half-sphere of radius equal to the probing
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tip radiusR, V ~ 2/31R>. The volumeV represents a rough upper bound to the volume
over which the material components have to be homogenemigbd. The damage due
to the ion implantation is limited to dimension on the ordérlom and is smaller than
the probing volume radius (20-30nm). This enables a singlectric constant to be
assigned to the entire volume of the material within the probadius. Such an approach
is generally known as the effective medium approximatiadA& The dielectric function

of such effective medium must lie between the Wiener bounagshdoy

ENS=X1€1+X2&2 (7.2)
and L
X1 X2\

&s=|—+— 7.2

= (242 72)

wherex; andx, = (1—x;) are the volume fractions of the two compounds apndnd

& their respective dielectric functions. The first boursgs, applies to the case of no
screening (NS), e.g. lamellae of material 1 and materialiriglyparallel to the direction
of light propagation. The second bourstgs, applies to the case of full screening (FS),
realized e.g. by lamellae of the two materials lying perpemdr to the direction of light
propagation.

More sophisticated models like the Bruggeman EMA [194] ltaswalues for effectivee
closer to the limit of no screeningys, than to the full screeninggs. In addition, mea-
surements of the far-field transmission and reflection spexftion-implanted SiC [195]
seem to be consistent with the dielectric function given y#E1. For this reason, the use
of an expression more complicated than Eq. 7.1 would not &tdigd here.

The two components whose dielectric functions enter Egstillheed to be determined. It
might seem obvious that they comprise the initial and firediss of the implantation pro-
cess, i.e. the purely crystalline and the purely amorphd@skowever, an ion transferring
its kinetic energy to the SiC crystal lattice does not catsgrimediate amorphization. In-
stead, point defects such as vacancies and interstitialfrat produced. These defects
increase the imperfection of the lattice and therewith thenon-polariton damping, rep-
resented by the damping coefficigntThis suggests the dielectric function of the form

(W) = X&asic(w) + (1 —X) &sic( Y, W), (7.3)
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where the parametengand x should be adjusted until the best fit to the experiment is
obtained. The parametgris thereby the damping coefficient of the damaged but still
crystalline SiC (c-SiC), while the parametesignifies the fraction of the amorphous SiC
(a-SiC) material in the total volume.

7.4.2 Damping and Amorphization

With the aid of Eg. 7.3, ion-implantation damage to SiC canekpressed in terms of
amorphization degreeand damping coefficient Both of these parameters are known for
the unimplanted region A. In particular= 0, and the damping coefficient of high-quality
crystalline SiC isy = 6+1cm L.

To be able to reproduce the unimplanted SiC spectrum (ApUsgs. 5.44 and 5.24, optical
constants determining the dielectric function of SiC agumed. According to [78], the
6H-SIC crystal used in this experiment can be described dyréimsverse and longitudinal
optical phonon frequenciesr | = 788 cnrt andw o | = 964 cnm ! parallel to the c-axis,
andwro | =797 cm® and Wo = 970cnt! perpendicular to the c-axis. Finally, the
dielectric functions are obtained from Eq. 3.11 wéth, = 6.72 ande,, ; = 6.56 and the
anisotropy is accounted for using the quasi-electrostaflection coefficien3 given by
Eqg.5.39.

The parameters of Eq. 5.24 pertaining to the probing tiptareneasured vibration ampli-
tude A = 25nm and the radiuR ~ 35nm, specified by the manufacturer (MikroMasch,
CSC37/Ti-Pt). A good fit to the experimental spectrum A isaiféd using the parameter
g=0.71e"11 This is slightly different formg = 0.7€%%8 which was found to reproduce
the near-field spectra of 4H-SiC shown in Fig. 5.16. Sincelti€siC crystal was cut par-
allel to the c-axis, whereas the 6H-SiC examined here wagearpendicular to the c-axis,
the small difference in the constaginight actually be needed to compensate for the ap-
proximate treatment of anisotropy effects, discussed o1.Se8. The effective tip length

of 2L = 0.6 um was used, as in Chapter5.

Finally, the most problematic part of Eq. 5.44, the weighfactorc of the reflected waves,
was set tag = 0.2e?™L/2 €0s45¢q gccount for the illumination under 45° as well as for the
fact that the reference spectrum for the area A was obtailos@ ¢o, but not exactly on
the boundary between Au film and SiC surface. The resultiegtspm of the region A is
shown in Fig. 7.13 and provides a reasonably good fit to theraxgent.
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Figure 7.13: Measured second-harmonic near-field spe€t&® sample with different
Be?t implantation doses A-D (points), together with the theioedtsignal
spectrum prediction by the monopole model with parameters table 7.2
(lines).

Fig. 7.13 also contains the the spectra of the regions B-ByT¥ere calculated the same
way as the spectrum A, with two differences. First, the enfire-factor(1+crp) in
Eq.5.44 was replaced i +crp)(14-crpa)/(1+corpa) to properly account for the nor-
malization procedure described in Sect. 7.3.3 above. Thghtveg factorc was thereby
set to 04e?"L/A cos45gince all data except the reference spectrum assigned tadabe
tained far from the Au film. However, due to the small dimensiof areas B and C, the
reflections from adjacent squares probably caused soms-talsbetween the spectra B
and C. This effect was neglected here because it could naeesply quantified.

Second, the parametgrin Eq. 7.3 was different from zero in areas B-D, so that the di-
electric functionegsic of amorphous SiC from [196] had to be included. Additionadly
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variable damping constamtwas used in the dielectric functiafsic of crystalline SiC,
as required by Eqg. 7.3. The actual valuexaihdy have been determined by numerically
searching for the best fits to the experimental spectra. dulshbe noted that a simple
linear regression was not applicable in this case becaubgboameters enter the Eq. 5.24
in a highly non-linear way. Attempts to use automated noedr regression algorithms
returned values fox andy which obviously produced worse fit to the data than the values
obtained manually by a trial-and-error procedure. To obtla¢ best values ofandy and
their respective uncertainties by an objective method,séesyatic search for the global
minimum of an error function was eventually performed intihe-dimensionak-y space.

In order to correctly reproduce both the minima and the maxfithe experimental spec-
tra, it was thereby necessary to construct an error fundgawhich measures mostly the
relative, rather than the absolute deviation of the catedlfrom the measured data at each
spectral point. In particular, the following function wased:

2
fo— ‘pz,exp— pZ,theo’ (7.4)
° ’p27exp} +0.1 ‘pz,max} 7 .

wherep; exp anNdp2 eo are, respectively, the experimental and theoretical cergtcond-
harmonic optical contrast between SiC and Au. A constanaleipul0% of the maximal
amplitude contras’tpzymax\ in each spectrum was added to the denominator of Eq. 7.4 to
reduce the influence of the large relative error containdigerexperimental points with low
amplitudes. Finally, the results obtained by this procedane summarized in Table 7.2,
with the error bounds estimated from the pointsxiy space where the error function
fe(X, y) exceeded its lowest value by more than 50%.

| Region| y/em™ ! | X |
A 6+1 0

B 11+2 | 0.04+0.01
C 11+3 | 0.13+0.01
D 1545 | 0.20+0.03

Table 7.2: Parametegsandx in Eq. 7.3 obtained by fitting the prediction of the monopole
model to the near-field spectra of ion-implanted SiC showrign7.13.

The plausibility of the dielectric function in the from of Ef 3 and the values obtained for
the fit parameterg andx will be now discussed in more detail. To this end, it has alyea
been mentioned in Sects. 7.3.1 and 7.4.1 that ion implamt&étnds to cause point defects,
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and the material becomes amorphous only after enough pefattd have accumulated
close to each other. Furthermore, the far-field reflectiaitg transmittivity measurements
in [195] indicate that upon implantation of‘Bions (very similar to Bé&"ions used in
this work), the pure crystalline SiC is first converted to tefective, but still crystalline
material, with negligible presence of the amorphous phélse.fraction of the amorphous
SiC in the total volume starts to increase only after thetioacof the defective crystalline
SiC has saturated.
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Figure 7.14: Second-harmonic near-field spectra of theantpt area C modeled by ad-
justing (a) only the damping coefficiept or (b) only the amorphization de-
greex.

Such observations are similar to the conclusion that candekerbased on the fit parameters
in Table 7.2. In particular, the main difference betweenititact area A and the low
implantation dose in area B is the almost doubled dampirgccompanied by only 4%
increase in the amorphization degpeeln contrast, the damping increases by only about
15% from B to C and from C to D, whereas the amorphization degses by~ 8% in
each step. This indicates that enough damage has been datedrietween the regions
B and C to bring the damping in the crystalline SiC close tarsdion value from which
point on the amorphization degree starts rising more rgpldbwever, a sharp separation
between these two phases found in [195] is not observed here.

The necessity of treating the implanted SiC as the mixturefdescribed two compo-
nents is further supported by Fig. 7.14. It displays an giteim reproduce the measured
spectrum C by adjusting only one parameter. In particute@nging the paramet&mwhile
keepingy = 6 yields the result shown in Fig.7.14(a). This model, edenato repre-
senting the medium by a mixture of the defect-free crystallbiC and amorphous SiC,
fails to correctly predict the near-field signal at frequesdelow the resonance. Simi-
larly, allowing only the damping of the crystalline SiC to tleanged and setting= 0, the
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spectra in Fig. 7.14(b) are obtained, falling into disagreet with the experiment at fre-
guencies above the resonance maximum. The correct maxirasitom, signal amplitude
and phase above and below the resonance are reproducetasi@auisly and correctly only
when values close to those listed in Table 7.2 are used. Enmifs a fairly quantitative
determination of the crystal quality, limited mostly by thecuracy of the model dielec-
tric function, Eq. 7.3, and the description of the tip-saenpéar-field interaction given by
Eq.5.34.

7.5 Identification of SiC Polytypes

Near-field optical contrasts due to the different implanteddoses encountered in Sect. 7.4
were large enough for the homodyne detection method to yegdoducible results. In
this section a more difficult task of identification of two SpBlytypes is presented. The
polytypes to be distinguished were known to be nitrogenedofH-SiC and 6H-SiC, with
the concentration of N atoms on the order of&per cn¥. Due to the relatively high
level of doping, the dielectric function of the two SiC polges has to be constructed by
adding the contributions to the susceptibility by both ptrorand plasmon-polaritons. The
resulting expression reads[196]:

o — Wio )

£(w) = &x(1+ Wo— W —iwl * —w?—iwy

). (7.5)

A different set of parameters applies to each polytype, amsidering that the anisotropy
has to be accounted for, it yields a total of 24 parameterg ptameters, together with
the values found in the literature are summarized in Talde 7.

| Parameter | 6H-SiC||c | 6H-SiCLc | 4H-SiC]c | 4H-SiClc |

£ [196] | 6.72 6.56 6.78 6.56
wro (cm1)[78] 788 797 782 797
w o (cm1)[78] 964 970 967 971

[ (cm D[197] 5.5 5.9 6.6 6.6
wp (cm H[197] 120 230 220 275
y (cm™D)[197] 250 500 450 450

Table 7.3: Values of the parameters in Eq. 7.5 describingntresstigated 6H and 4H SiC
polytypes, parallel and perpendicular to the crystallpgrac-axis.

The main difference between the 6H- and 4H-SiC parametetsipeg to phonon polari-
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tons is the ca. 4cm' shift of the wro and w o frequencies for electric field oscillations
parallel to the c-axis. Perpendicular to the c-axis,dhe andw o frequencies are almost
identical, which is not surprising since the structure eftivo polytypes differs only along
the c-axis. The damping coefficierliswvere taken from [197], where they were obtained
as fit parameters to Raman scattering measurements on dbpethd 6H-SiC crystals.
On the plasmon side, the most important difference betweempolytypes is the higher
plasma frequencyy, for the 4H polytype. This difference can be traced back tddier
effective electron mass parallel to c-axis in 4H-SiC, fotmtdem, 4 = 0.48mg, compared
to my gy = 1.4mg in 6H-SIiC. The estimate for the plasma frequengy= \/4rmne?/me
was obtained from the the dopant concentratign= 1.7 x 1018cm~3 which was found
to be in the best agreement with the experiment, as will béaegx later. The plasmon
dampingy was then interpolated between the values given for diftedeping levels in
[197] to the same valuey = 1.7 x 10*8cm3.

Although the plasmon properties differ significantly beénethe polytypes, the plasma
frequency & 250cnT?) lies far below the investigated frequency range betwednzsi
950cnt . The plasmon contribution to the dielectric function isgtamall compared to
the contribution by phonon polaritons. As a consequendg voeak contrasts between the
polytypes are expected in the region of the near-field phgp@ariton resonance, requir-
ing the use of the pseudo-heterodyne detection method. (54@&) to obtain reproducible
results. Otherwise, spurious contrasts can be observetipas) in Sect. 6.5.

7.5.1 Near-field Optical Images of 6H/4H Polytype Transition

Near-field images of the transition between 4H-SiC and 6ER&ilytypes obtained &t =
10.70um (w=935cnT!) andA = 10.55um (w = 948 cnm?) using the pseudo-heterodyne
detection method are shown in Fig.7.15. No contrast betvpedytypes in the optical
amplitude image atv = 935cnT ! is observable, but a small phase contrast nevertheless
exists at this wavelength. The image takeruat= 948cnT! reveals both a weak but
unambiguous contrast in the near-field signal amplitudeaaladger contrast in the signal
phase. This indicates that the polytypes can indeed bendisshed by purely optical
means. For the purpose of later identification, the polytypéhe left of the boundary
will be denoted by A, and the polytype to the right of the boanydby B, as shown in
Fig. 7.15(b).

For comparison, the simultaneously obtained topograptiysosdample is shownin Fig. 7.16,
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Figure 7.15: Near-field optical images of 4H-6H SiC polytymnsition. Shown are the

near-field signal amplituds> (left) and phase, (right) at (a) 935cm? and
(b) 948cnTL. Image size: QUM um.

(a) (b)

Figure 7.16: (a) Topography and (b) SEM image of a 4H-6H Sil@tppe transition.

together with a separately recorded scanning electronogniaph of the same area. The
topography image displays a clearly visible height stepsgthe boundary between the
two polytypes, running from upper left towards lower riglrcer of the image. This
step is most likely generated in the polishing process dudighitly different hardness
of the polytypes. The elevated area at the bottom of the imagéig. 7.16 is the Au
film evaporated onto the SiC crystal surface for the purpdsegmal normalization (see
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Sect. 2.5.1). The same highly conductive Au surface is easstinguished in the SEM

image in Fig.7.16(b). A slight contrast between the two pgigs is also present in the
SEM image. However, the identification of the polytypes A @&thased on either the
topography or the SEM image is not possible without soméehé&urinformation on the

properties of each of the two polytypes. Furthermore, withamowing that the topogra-
phy and SEM images actually contain the 4H-SiC and 6H-Sigtppes, the materials
imaged in Fig. 7.16 (a) and (b) could not be identified at all.

7.5.2 Spectral Identification of SiC Polytypes

It will be shown now that the infrared near-field spectroscepables an unambiguous
identification of the polytypes A and B based on their IR di&ie function given by
Eq. 7.5 and parameters from Table 7.3. To this end the nddrsfpectra of the polytypes
A (disks) and B (squares) from the polytype boundary in Figg67are shown in Fig. 7.17,
together with the theoretical near-field spectrum preadirctor 6H-SiC (full line) and 4H-
SIiC (dashed line). Since the full line coincides with disksl @ashed line with squares in
Fig. 7.17, the polytype marked as A in Fig. 7.16 can clearlideetified as 6H-SiC and the
polytype B as 4H-SiC.
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Figure 7.17: Second-harmonic near-field spectra of twcedsfit doped SiC polytypes.
Points represent the measured values, whereas the fullastekd line rep-
resent the monopole model prediction for near-field sigpatsa of doped
(n~ 10'8cm~3) 6H-SiC and 4H-SiC respectively.

It should be noted here that the excellent agreement bettheesxperimentally obtained
spectra and the theoretical prediction based on the moeapotel (Chapter 5) was ob-
tained by adjusting the dopant concentratignto provide the best fit to the experiment.
The adjustment ofiy to fit the experimental spectra was not only justified but alsces-
sary because the exact dopant concentration was only vprgxdmately known to be on
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the order of 168cm~2. Furthermore, the concentration of free carriers is not#gaqual
to the dopant concentration, anyway.

Even if ny was not know precisely, the distinction between 6H and 4H [sytypes
would be possible since the 4H-SiC spectrum appears shitéigher frequencies and
has a lower maximum than the 6H-SiC spectrum regardlesseopldsma frequencyoy,
determined byw. Furthermore, the same conclusion is reached if the dipoldetis used

to predict the near-field signal [67]. However, the monopuotalel allows a more precise
characterization of the sample, including the determamatf an otherwise very loosely
specified parametery. Provided that the results of the monopole model are confirme
by future studies, this model could enable the identificatd components contained in
a sample with nanometer-scale resolution, even withouptioe information on what the
components might be.

This and some other possible applications of the findingsegored in this chapter will be
discussed in the next section.

7.6 Applications

The results presented in this chapter demonstrate thetmdtehnear-field infrared spec-
troscopy as a quantitative tool for investigation of crystaucture with a nanoscale reso-
lution, limited only by the probing tip radius. The best attdble resolution thus surpasses
the standard (far-field) infrared spectroscopy by rougtitge orders of magnitude without
a loss in the sensitivity to chemical and structural prapsrof the sample. As stated in
Sect. 7.4, the near-field spectroscopy also bears the pitemexceed the sensitivity of
the far-field IR spectroscopy since the near-field intecsichetween the probing tip and
a crystalline sample exhibits sharper resonances thendbtstRahlen bands observable
in far-field spectroscopy. This effect can be used e.g. to thegmplantation profiles
of donor or acceptor atoms in semiconductors. This is pdatity important for SiC,
where ion implantation is the only viable method of patterdeping required for fabrica-
tion of electronic devices. The diffusion-based dopingcpss, standard in Si electronics
fabrication, cannot be applied to SiC because of the pwbtioon-existent diffusion at
temperatures below 1800 C [198].

The ability to determine the crystal structure on the nartensrale also enables the map-
ping of the crystal quality, i.e. defects in the crystal stame [67]. Again, this possibility is
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especially interesting in conjunction with SiC whose wigesd usage in the high-power
electronic circuits is still held back by the insufficienystal quality [188].

As a more exotic example, it has been suggested that ioraitgd SiC can serve as an
extraordinary data storage medium offering essentiallynited lifetimes and the ability
to withstand extreme environmental conditions [199]. latttase the data storage density
corresponding to the 1umlpm squares in Fig. 7.9 would equal 100 Mbitfcrwhich is
roughly equal to the density of bits on a compact disc (CD} Tdsolution observed in
Fig. 7.9 can be significantly improved by implanting heavters instead of BE". Heavier
ions exhibit less straggling below the surface of SiC ciyata thus permit much sharper
structures to be drawn. As an example, Fig. 7.18(b) contamsar-field optical image of
SiC crystal patterned by implantation of 50 keVA5dons, with squares down to 200 nmin
size are clearly distinguishable. Squares in Fig. 7.18lemidlan 200 nm cannot be clearly
resolved primarily because of the unwanted contaminatiahe SiC crystal surface by
stray ions produced by blanking of the ion beam as it is saormer an unimplanted area
between two implanted squares.

() (b)

Figure 7.18: (a) Implantation pattern and (b) s-SNOM imagéss0keV Ga FIB-

implanted SiC crystal surface. The implantation dose wasuald x
10'ions/cnf.

To prove that the resolution limit in Fig. 7.18(b) is a teatalj rather than a fundamental
one, a line pattern implanted by FIB in SiC and imaged in s-SN®shown in Fig. 7.19.
No beam blanking is performed within one line in Fig. 7.1%rdby significantly reduc-
ing the contamination of the unimplanted areas and makiadjies 100 nm wide clearly
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visible. 50nm lines can also be resolved after a slight esttenhancement, as shown
in Fig.7.19(b). The lateral straggle of 50keV G#ns amounts to about 20 nm, thus
preventing even smaller structures to be created.

(b)

Figure 7.19: s-SNOM images of a line pattern created in a peddSiC crystal by FIB
implantation of 50 keV Gaions. Stripes 200 nm and 100 nm wide are easily
resolved in part (a). With the aid of the contrast enhancénmethe lower
right corner of the part (b), 50 nm wide stripes are also rieeka he blurring
of the implanted stripes is caused by ta@0nm lateral straggle of Gaons.

Considering that the s-SNOM resolution has been repeapediyen to be limited only by
the probing tip radius and can routinely reach below 20 nm443, it can be inferred that
even the 50-nm structures do not push the s-SNOM resoluiis limits. Furthermore, it
was shown in [75] that objects with sizes as small A3 df the probing tip radius can be
detected and imaged by s-SNOM. Consequently, it should bgilgie to investigate down
to 5-nm defects or irregularities in engineered structofesizes as small as 20 nm using
commercially available metal-coated probes. This is by mams an end because it has
already been shown that electrochemically etched metagsraithR < 5 nm can be pro-
duced and successfully used in s-SNOM [74], providing aftddresolution improvement
over the metal-coated tips.

It is important to note that the same resolution and sertyittan be achieved in the entire
spectrum from the visible to the terahertz frequencies.vigible and near-IR wavelengths
are thereby useful for identification of metals, the mid-#Rge for identification of polar

semiconductors or insulators, and the THz frequencies &asuring the carrier density in
doped semiconductors. Considering that this entire rahgawelengths can be combined
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in a single instrument, the scattering-type near-fieldagbtmicroscopy may soon become
an indispensable tool for the analysis of materials ando#gsvon the nanometer scale.
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