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Abstrat
Scattering-type scanning near-field optical microscopy (s-SNOM) is a versatile optical

imaging technique which circumvents the diffraction barrier by detecting the light scattered

from a sharp probing tip oscillating above the specimen surface. Significant improvements

in the theoretical modeling, signal detection and applicability of the s-SNOM are presented

in this thesis.

For the first time it is demonstrated that the s-SNOM operating at infrared frequencies

can be employed for the nanoscale mapping of crystallinity in polar materials. To this

end, the crystal lattice degradation caused by ion beam implantation in a SiC crystal is

investigated by near-field infrared spectroscopy in the 9-11 µm wavelength range. It is

found that the strength of the phonon-polariton resonant near-field interaction between the

s-SNOM probe and the sample rapidly diminishes with the accumulation of defects in the

crystal lattice. The near-field optical contrast between the crystalline and amorphous SiC

exceeds 30 dB, making the near-field resonance strength a very sensitive measure of the

crystal lattice quality. S-SNOM images of SiC crystal surfaces patterned by focused ion

beam (FIB) implantation reveal a spatial optical resolution better than 50 nm (λ/200).

It is additionally shown that IR s-SNOM is sensitive to the stacking sequence of atomic

layers in a crystal (polytypism). Longitudinal optical phonon frequencies in SiC polytypes

are separated by only 2-3 cm−1, resulting in very fine near-field optical contrasts. A proof

is presented here that the commonly employed non-interferometric and homodyne inter-

ferometric s-SNOM signal detection methods do not yield reproducible results with weak

contrasts like those observed with SiC polytypes. The reason for such behavior is found

in the interference between the near-field and background scattering. To overcome this

problem and obtain accurate and reproducible near-field spectra even with weak structural

contrasts, a new ”pseudo-heterodyne” interferometric method for s-SNOM signal detection

has been developed. The pseudo-heterodyne technique avoids the background interference

by applying a sinusoidal phase modulation to the interferometer reference wave. It also of-
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fers the advantage of a simple experimental implementationand applicability in the entire

wavelength range from near-UV to far-IR.

Unambiguous material identification from the s-SNOM spectra has been up to now hin-

dered by quantitative discrepancies between the calculated and the measured near-field

contrasts. To resolve this problem, a ”monopole” model of the probe-sample near-field

interaction is introduced in this work. It is derived by representing the s-SNOM probe

as a prolate spheroid and subsequently reducing it to point charges which give the domi-

nant contribution to the near-field interaction. The new model provides an unprecedented

quantitative agreement with the experimentally observed near-field contrasts. Moreover,

the final closed-form analytical solution is simple enough to be used in the inverse way to

determine the complex dielectric function of the sample from the demodulated near-field

signal at each pixel in an image.

The monopole model combined with the pseudo-heterodyne near-field spectroscopy has

the potential to transform the infrared s-SNOM into a powerful analytical tool for nonin-

vasive optical probing of the local chemical composition and structural properties on the

nanometer scale.



Zusammenfassung
Die optische Streulicht-Nahfeldmikroskopie (scattering-type near-field optical microsco-

py, s-SNOM) ist eine vielseitige optische Mikroskopiemethode, bei der das Beugungsli-

mit durch die Detektion des Streulichts einer über der Probenoberfläche gerasterten Sonde

überwunden wird. Im Rahmen dieser Arbeit wird eine deutliche Verbesserung der theore-

tischen Beschreibung, der Signaldetektion, sowie der Anwendbarkeit dieses Mikroskopie-

verfahrens vorgestellt.

Es wird erstmals demonstriert, dass Streulicht-Nahfeldmikroskopie mit Infrarotbeleuch-

tung (IR s-SNOM) dazu benutzt werden kann, die Kristallinität von polaren Materialien

auf der Nanometerskala abzubilden. Dazu wird die Schädigung der Kristallstruktur eines

ionenimplantierten Siliziumkarbid Kristalls (SiC) durchNahfeldspektroskopie im infra-

roten Wellenlängenbereich (λ = 9-11 µm) untersucht. Die Stärke der phonon-resonanten

Nahfeldwechselwirkung zwischen der Nahfeldsonde und der Probe nimmt dabei mit zu-

nehmender Defektdichte im Kristallgitter rasch ab. Der nahfeldoptische Kontrast zwischen

kristallinem und amorphen SiC beträgt mehr als 30 dB, weshalb die Stärke der Nahfeldre-

sonanz ein extrem empfindliches Mass für die Kristallqualität darstellt. Anhand der nahfel-

doptischen Bilder der mit fokussierten Ionenstrahlen (FIB) strukturierten SiC Oberflächen

kann eine laterale optische Auflösung von unter 50 nm (λ/200) nachgewiesen werden.

Weiterhin wird gezeigt, dass das IR s-SNOM auch auf die Stapelfolge von Atomlagen in ei-

nem polaren Kristall (Polytypismus) sensitiv ist. Die longitudinalen optischen Phononfre-

quenzen von SiC Polytypen unterscheiden sich um lediglich 2-3 cm−1, was zu einem sehr

geringen Nahfeldkontrast führt. Anhand dieses Kontrasts wird gezeigt, dass die weithin

verbreitete nicht-interferometrische oder homodyn-interferometrische Strreulichtdetektion

keine reproduzierbaren Resultate von schwachen Kontrasten ergibt. Der Grund hierfür ist

die Interferenz von Nahfeld- und Hintergrund-Streulicht.Dieses Problem wird durch ei-

ne „pseudo-heterodyne“ interferometrische Detektionsmethode überwunden. Das in dieser

Arbeit neu entwickelte Detektionsverfahren liefert erstmals präzise und reproduzierbare
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Nahfeldspektren von SiC Polytypen. Die pseudo-heterodyneTechnik vermeidet stören-

de Interferenzen durch eine sinusförmige Phasenmodulation des Referenzstrahls. Weitere

Vorteile sind die einfache experimentelle Implementierung, sowie die Anwendbarkeit im

kompletten Spektralbereich zwischen UV und Ferninfrarot.

Bisher war eine eindeutige Materialidentifizierung mit dems-SNOM durch quantitative

Unterschiede zwischen den theoretischen und experimentellen Nahfeldspektren oftmals

nicht möglich. Um dieses Problem zu lösen, wird in der vorliegenden Arbeit ein neu-

es Modell für die Nahfeldwechselwirkung zwischen Nahfeldsonde und Probe eingeführt.

Bei der Herleitung des sogenannten „Monopol“-Modells wirddie Nahfeldsonde zunächst

durch ein Spheroid ersetzt. Die elektrischen Felder am Apexlassen sich näherungsweise

durch eine Punktladung beschreiben, mit deren Hilfe eine analytische Näherung der nah-

feldoptischen Wechselwirkung mit der Probenoberfläche gefunden wird. Die Ergebnisse

des Modells zeigen eine hervorragende quantitative Übereinstimmung mit experimentellen

Nahfeldkontrasten. Aufgrund der geschlossenen analytischen Lösung könnte das Modell

in Zukunft angewendet werden, um aus den experimentellen Nahfeldsignalen an jedem

Bildpunkt die komplexe dielektrische Funktion der Probe zuberechnen.

Die Streulicht-Nahfeldmikroskopie stellt bereit jetzt ein vielversprechendes Verfahren zur

optischen Nanoanalytik dar. Sie bietet einmalige Möglichkeiten zur zerstörungsfreien Cha-

rakterisierung sowohl der lokalen chemischen Zusammensetzung als auch von lokalen

strukturellen Materialeigenschaften. Die experimentellen und theoretischen Entwicklun-

gen der vorliegenden Arbeit sollten in Zukunft zu weiteren faszinierenden Anwendungen

führen, etwa zur zerstörungsfreien Charakterisierung nanoskaliger Spannungsfelder oder

zur Analyse der Nanokompositen mit einer Auflösung in nm-Bereich.



1 Introdution
We are surrounded by a large variety of natural and artificialobjects displaying interesting

structural properties on the nanometer scale, i.e. the length scale extending from about one

to hundred nanometers. Examples range from structured materials such as nanocompos-

ites and quantum dots, over electronic components like transistors and memory cells, to

biological objects including single molecules, protein complexes, viruses, etc. The struc-

ture of these objects cannot be directly observed by conventional optical microscopes due

to the inherent resolution barrier imposed by the wave-likenature of light. In particular,

the diffraction of light waves limits the smallest distancebetween two resolvable points to

about half the wavelength. Consequently, even the best optical microscopes cannot resolve

features smaller than about 200 nm.

The demand for the spatial resolution significantly better than 200 nm has led to the devel-

opment of numerous alternative imaging techniques exploiting a wide variety of contrast

mechanisms and in some cases surpassing even the atomic resolution. An overview of the

most widespread high-resolution imaging methods is presented at the beginning of Chap-

ter 2. The apertureless or scattering-type scanning near-field optical microscopy (s-SNOM)

employed in this work is a nondestructive optical imaging technique which circumvents the

diffraction barrier with the aid of a sharp probing tip placed in the immediate proximity of

the specimen surface. The tip is illuminating by a focused laser beam and the light scat-

tered by the tip is collected and recorded. The amplitude andphase of the scattered light

depend on the near-field interaction between the probe and the sample, thereby enabling

an optical map of the sample to be constructed by scanning thes-SNOM probe along the

specimen surface. The highest attainable resolution is determined only by the sharpness of

the probing tip and is thus independent of the light wavelength. A more detailed descrip-

tion of this technique is provided in Chapter 2, including the typical experimental setup and

a simple theoretical model which qualitatively explains the signal and contrast generation

in s-SNOM.
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In addition to high-resolution optical microscopy, s-SNOMcan also be applied for spec-

troscopy if the sample is repeatedly scanned while sequentially changing the illumination

wavelength. This is of particular advantage in the infrared(IR) wavelength range where

the vibrational spectral fingerprints enable chemical identification of compounds present

in the sample. The conventional far-field IR spectroscopy thereby suffers from the poor

resolution, on the order of several micrometers. The combination of s-SNOM and IR spec-

troscopy therefore provides the means to obtain both high chemical sensitivity and high

spatial resolution. Furthermore, particularly sharp and strong resonances were discovered

in the s-SNOM spectra of samples supporting quasi-particles known as surface polaritons.

The physics behind surface polaritons and an overview of their properties and applications

is given in Chapter 3.

By comparing the measured near-field spectra of polariton-resonant materials with predic-

tions of the simple point dipole model presented in Chapter 2, a quantitative disagreement

between the experiment and the model is found regarding boththe resonance position and

its strength. This discrepancy has been identified as the primary factor limiting the mate-

rial identification capabilities of the IR s-SNOM. Chapter 5is for this reason devoted to the

derivation of a new and improved model capable of s-SNOM signal prediction on a quanti-

tative level. The new ”monopole” model, first derived as a part of this thesis, departs from

the commonly employed reduction of the s-SNOM probing tip toa point dipole and in-

stead represents it by a prolate spheroid in uniform electric field. It is further demonstrated

that only a small part of this spheroid interacts with the sample, and that the interacting

part can be approximated by a point charge (monopole). An analytical expression for the

charge induced by the near-field interaction between the s-SNOM probe and the sample is

finally derived. Comparisons to the experiment demonstratethat the monopole model rep-

resents a major improvement over the dipole model and succeeds in quantitative prediction

of near-field material contrasts measured by s-SNOM.

Technically, the measurement of pure near-field contrasts in s-SNOM is known to be com-

plicated by the large background scattering generated by the vibrating s-SNOM probe. The

monopole model derived in Chapter 5 is extended in Chapter 6 to account for the back-

ground scattering. On this basis, the twofold background influence on the s-SNOM signal

is revealed and quantified. One part of the background influence is additive with respect

to the near-field signal, and is routinely suppressed by the standard higher-harmonic de-

modulation method. The other part of the background contribution is multiplicative with
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respect to the near-field signal and a proof that it needs to beeliminated for a reliable near-

field spectroscopy of surface-polariton resonant samples is presented here. For a complete

multiplicative background elimination, a new interferometric detection method has been

proposed and implemented in this thesis. Comparison of the s-SNOM signal detection

techniques demonstrates the advantages of the new ”pseudo-heterodyne” over the other

methods either in terms of background suppression power or in the ease of implementation

and available spectral range.

Building on the improvements in s-SNOM signal modeling and detection presented in

Chapters 5 and 6, the applicability of s-SNOM is extended to the measurement of struc-

tural contrasts in materials of the same chemical composition in Chap 7. In particular, the

way to measure crystal quality degradation due to ion implantation or radiation damage is

presented. It is shown that even minute variations in crystal structure such as those aris-

ing from the different stacking order of layers in a crystal (polytypism) can be detected

in s-SNOM and reproduced by the monopole model. It is finally suggested that with the

aid of the monopole model the nanometer-scale chemical and structural composition of a

sample on the might be recovered even with no prior information on the possible sample

composition.
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2 Sattering-type Near-�eldOptial Mirosopy
2.1 Introdution
Light is our primary source of information about the environment which surrounds us. This

is true not only for accomplishing everyday tasks, but also in the domain of scientific image

acquisition because optical imaging methods are simple andreliable, fast and inexpensive

and also contactless and noninvasive. Despite all these advantages, alternative imaging

techniques had to be developed because of the fundamental limit on how small details can

be resolved using optical methods. The optical resolution barrier is a consequence of the

wave-like nature of electromagnetic (EM) radiation which is for this reason susceptible to

diffraction. Due to diffraction, the image of a point sourceof light produced by an optical

microscope is not a point but rather a set of concentric bright and dark rings known as Airy

pattern or Airy disk (Fig. 2.1).

-1
0

1x � ΛM

-1

0

1

y � ΛM
-1

0
1x � ΛM

Figure 2.1: Airy pattern: Intensity distribution in the image plane of a point source viewed
by an optical microscope with a numerical apertureNA = 1 and magnification
M.

Two closely separated point sources are usually consideredjust resolved when the cen-

tral maximum of the first source’s Airy pattern coincides with the first zero of the second

source’s Airy pattern, as shown in Fig. 2.2(b). This criterion, known as the Rayleigh cri-

terion [1], was used by Ernst Abbe[2] to established the following quantitative relation
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between the smallest distance∆xmin between two point source resolvable by an optical

microscope and the operating light wavelengthλ :

∆xmin = 0.61
λ

n sinθ
, (2.1)

whereθ represents the half angle subtended by the cone of light captured by the microscope

objective, andn is the refractive index of the medium between the sample and the objective.

The productn sinθ thereby defines the numerical aperture of the objective, denoted asNA.
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Figure 2.2: Image of two point-like sources of light obtained by an optical microscope with
NA = 1 and magnificationM: (a) separated by∆x = 1.2λ and easily resolved,
(b) separated by∆x = 0.6λ and just resolved according to the Rayleigh crite-
rion, and (c) separated by∆x = 0.3λ and not resolved.

It should be noted that the factor of 0.61 in Eq. 2.1 is a directconsequence of the Rayleigh

criterion and other criteria might yield different results. For example, according to the

Sparrow criterion [3], two point sources are resolved if a saddle exists along the line con-

necting the central maxima in their respective images, and the smallest resolvable distance

equals∆x = 0.47λ/n for θ = 90. Even with the Rayleigh criterion, the resolution can be

pushed to about the same value using oil immersion objectives for whichn≈ 1.3. Hence

it is customary to say that the resolution of optical microscopes is limited to about half the

wavelength. Since the point spread function of the microscope is known, it might seem

natural to attempt the deconvolution of a recorded image by post-processing it. However,

this turns out to be an ill-posed inverse problem because significantly different distributions

of sources can produce very similar intensity distributions in the images[4, 5].

Since there are numerous natural and artificial objects withoverall sizes or substructures

on the order of 100 nm and less, in many cases the resolution obtainable with visible light

(λ = 400..800 nm) is not sufficient. Although ultraviolet (UV) light oreven X-rays could

be theoretically used to obtain much better resolution, there are several practical obstacles

preventing this. Depending on the actual wavelength, it is difficult or even impossible
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to fabricate lenses which are transparent to such light and also focus it with sufficient

precision. Furthermore, the investigated samples may suffer from rapid degradation due to

the ionization damage.

To circumvent these problems, alternative techniques havebeen developed. The most use-

ful technique for obtaining high-resolution structure of crystalline material is based on the

diffraction of X-rays. It provides atomically resolved maps of the electron density in crys-

tals with a wide range of unit cell sizes. The unit cells may thereby contain between several

atoms in simple inorganic crystals to over 103 atoms in large biological macromolecules.

Even larger structures of up to 106 atoms can be studied by X-ray crystallography albeit

the resolution is limited to about 0.4 nm in that case[6]. Limitations of the crystallography

approach follow from the fact that many substances do not readily crystallize in their nat-

ural state and also that dynamic studies cannot be performedwith matter in its crystallized

state.

Whereas the crystallography only works with a huge number ofidentical units, it is pos-

sible to resolve single nanometer-sized objects by using electrons instead of photons for

probing the sample[7, 8]. Unlike photons, electrons are charged particles and can be fo-

cused by magnetic lenses which are hollow and do not pose a problem for the transmission

of particles. The de Broglie wavelengthλ = h/p of electrons is smaller than 0.1 nm already

for electrons with kinetic energies on the order of 1 keV, so that the attainable resolution is

mostly limited by imperfections of magnetic lenses. High Resolution Transmission Elec-

tron Microscopy (HRTEM) can even achieve a true sub-atomic resolution in crystalline

material by exploiting phase contrasts of electron waves exiting the sample. Although

nowadays an indispensable tool for structural analysis in the materials and life sciences,

transmission electron microscopy has to be used in high vacuum conditions and at low

temperatures, making it unsuitable for monitoring naturally occurring dynamic processes.

TEM is also notorious for the highly demanding sample preparation. Although the latter

obstacle is avoided in Scanning Electron Microscopy (SEM, [9–11]), this comes at the ex-

pense of an order of magnitude lower resolution. In the case of both TEM and SEM, the

exposure time is limited to relatively short periods because of the deteriorating influence

of the electron beam on the sample.

Owing to the recent progress in fluorescence imaging, a completely non-invasive and non-

destructive high-resolution imaging can be performed by purely optical means. There are

two techniques that need to be mentioned in this context. Oneof them is known as the
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STimulated Emission Depletion (STED, [12, 13]) microscopy. It uses two diffraction-

limited pulses for illuminating the sample, the first of thembeing a Gaussian-shaped fluo-

rescence excitation pulse. The excitation pulse is immediately followed by a second, ring-

shaped (toroidal) depletion pulse tuned to an emission lineof the fluorescent dye. After the

second pulse depletes the excited energy levels of dye molecules by means of stimulated

emission, the fluorophores remain in an excited states only in the center of the depletion

pulse. The exact non-depleted spot size depends on the wavelength of light and the inten-

sity of the depletion pulse compared to the intensity neededfor saturating the depletion[14],

and may be as small as 20-30 nm in diameter. By scanning this spot through the sample, a

fluorescence map of the sample is obtained with the respective subwavelength resolution.

The same effect can also be achieved by another method, knownas the PhotoActivated

Localization Microscopy (PALM, [15]). It relies on the photoactivation of only a small

fraction of total fluorophore population at a time, such thateach activated dye molecule is

separated from all other activated dye molecules by at leastone far-field resolvable distance

∆xmin. The location of each active (fluorescing) dye molecule is then precisely determined

by fitting the center position of its image to the theoreticalpoint spread function (Airy pat-

tern). After all activated fluorophores have been irreversibly bleached, the next generation

of dye molecules is activated and the procedure is repeated until the complete fluorescence

map of the sample has been obtained. The resolution which canbe achieved this way

is generally better than 25 nm, and theoretical considerations indicate it can be improved

down to a few nanometers.

If the density of fluorophores is so low that they can all be directly resolved, their localiza-

tion with extremely high precision may be performed even without resorting to photoac-

tivable dyes [16, 17]. For highest localization and longesttracking times of fluorescent

molecules, it is necessary to increase the number of photonsthey emit before bleaching

to the largest values possible [18]. By depleting oxygen molecules from the sample, it

is possible to register up to 106 photons instead of the usual 103− 104 photons per dye

molecule and consequently enable the Fluorescence Imagingwith One Nanometer Accu-

racy (FIONA, [19]). Even without special manipulation of the sample, it is possible to

extract more information form the optical signal if the number of photons hitting each

pixel in an image and their arrival times are both recorded [16, 20]. Alternatively, it is

also possible to exploit other kinds of luminescence to gainspatial and structural infor-

mation about the sample. Especially the electroluminescence and radioluminescence are
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frequently employed in the semiconductor analysis and materials research, respectively.

Even more options exist if the distances between two or more sources are to be measured

instead of their absolute positions. The suitable methods include Förster Resonance Energy

Transfer (FRET, [21]) between fluorescent molecules and shift of the plasmon resonance

due to interaction of closely spaced metallic nanoparticles [22]. The former works best

over short distances of up to 10 nm, whereas the latter is intended for longer distances up

to 70 nm. Finally, if the motion of an object needs to be tracked without knowing its abso-

lute position, interferometric methods can provide a resolution below 1 nm even with non-

labeled samples. In that sense, the Differential Interference Contrast (DIC) microscopy is

sensitive to displacements on the order of 1pm Hz−1/2[23].2.2 Sanning Near-�eld Optial Mirosopy
There exists an entire family of high resolution imaging techniques known as Scanning

Probe Microscopy (SPM) which has not yet been mentioned in this introduction. Different

SPM variants cover a wide spectrum of contrast mechanisms, including mechanical (AFM

[24]), electric (STM [25], KPFM [26], EFM [27], SCM [28]), magnetic (MFM [29, 30],

MRFM [31, 32]) and optical (SNOM [33, 34], PSTM [35]) phenomena, with or without

labeled specimens. SPM techniques routinely reach resolutions in the nanometer range and

some are even capable of resolving details on the atomic scale. The common characteristic

of all SPM variants is the use of sharp probing tips to scan thesurface of the specimen.

Either the probe or the specimen are mechanically moved frompixel to pixel, line by line,

to obtain a raster image of the specimen by recording the probe-sample interaction as a

function of their relative position. Some general shortcomings of the SPM techniques

follow from this kind of image acquisition. In particular, the probing is limited to the

surface of the sample, and the relatively long image acquisition times are necessary to

complete the scanning process.

Historically, the SPM was founded with the invention of the Scanning Tunneling Micro-

scope (STM [25, 36, 37]) in 1981 by G. Binnig and H. Rohrer, whosolved the problem

of achieving and maintaining very precise control over the distance between the probing

tip and the sample surface despite all external disturbances like noise and vibration. The

STM measures the current of electrons tunneling between theprobe and the sample sur-

face, which makes it applicable only to conducting and semiconducting materials. The
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Atomic Force Microscope (AFM, [24]) was developed shortly afterward to enable imaging

of the various samples independent of their conductivity. In the AFM, the probing tip is

attached to a small cantilever which deflects in response to the variations in the interaction

force between the probing tip and the surface of the specimen. With very sharp probing

tips, even sub-atomic resolution can be achieved[38] and different kinds of forces can be

probed depending on the way the probing tip is coated or functionalized.

The SPM principles can be extended to optical probing as well. The basic idea actually

predates the development of STM and is attributed to Synge who already in 1928 proposed

a method for high resolution optical imaging by opening a small aperture in an otherwise

opaque screen. The aperture would be held in the immediate proximity of the specimen,

thereby preventing the effects of diffraction to escalate before the transmitted light reaches

the specimen. This idea was first implemented in practice by Ash and Nicholls in 1972

[39] using microwaves of about 3 cm wavelength. It took another 12 years before the first

near-field optical microscope was constructed on that principle independently by D. Pohl

[34] and by A. Lewis [33] and their coworkers. Today, the mostcommonly used aperture

probes are metal-coated single-mode optical fibers with a small opening at their end [40],

as illustrated in Fig. 2.3(a). The resolution improves as the aperture is made smaller, but

this simultaneously leads to a rapid decrease in the transmission efficiency. The resolution

of aperture SNOM is thus in practice limited to aboutλ/10.

(a) (b) (c)

Figure 2.3: Comparison of SNOM variants: (a) aperture, (b) apertureless, and (c) tip-on-
aperture.

An alternative method that provides completely wavelength-independent resolution was

first published in 1985 by Wessel who suggested to exploit theenhanced field in the vicin-
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ity of a small particle for illuminating the sample [41]. Thefirst near-field optical micro-

scopes based on this principle were built in 1994 by Zenhausern et al. [42] and by Inouye

and Kawata [43]. They used metalized AFM probes instead of the originally proposed

small particles to create an optical ”nano-focus”, illustrated in Fig. 2.3(b). The size of the

nano-focus depends only on the tip apex radius, thus providing the same resolution with the

visible and infrared light, in both cases on the order of 10 nm[44–46] and below [47]. The

imaging mechanism in the apertureless SNOM is based on the optical interaction between

the probe and the specimen, mediated by the evanescent fields. The interaction modifies

the amplitude and/or phase of light waves scattered by the probe and subsequently detected

by far-field methods. Because the scattered light represents the measured quantity in aper-

tureless SNOM, this SNOM variant is also called the scattering-type SNOM (s-SNOM).

Among possible scattering channels, elastic scattering islargely predominant. However,

Raman scattering can also appear [48] and can be extracted from the elastic scattering

background by filtering. The same can be done with light of doubled frequency which

is generated by virtue of second harmonic generation if the field intensity at the tip apex

is strong enough [49, 50]. Single- and two-photon fluorescence excitation by s-SNOM

probes have also been reported [51, 52]. It should be noted that unlike most other scanning

probe techniques, the near-field optical microscopy can also detect objects located at some

distancebelow the sample surface [53, 54]. Finally, being built upon the AFM, the s-

SNOM can also provide the topography of the sample surface simultaneously with the

optical image.

Besides all the advantages of the s-SNOM, there exists an obstacle for its application in op-

tical imaging due to the already mentioned large backgroundscattering. The background

scattering is not related to the probe-sample near-field interaction but can nevertheless pro-

duce contrasts in s-SNOM images, thereby falsifying them. For this reason, a large portion

of development efforts has been devoted to the suppression of the background [47, 55–58]

ever since the first experimental realizations of the s-SNOM. This thesis is no exception to

the said trend and includes an entire chapter (Chapter 6) devoted to the theoretical modeling

and experimental suppression of the background scattering.

It is also worth noting that a hybrid between the aperture andapertureless SNOM has

been recently introduced by H. Frey et al.[59, 60]. The probes used in this method are

known as tip-on-aperture (TOA) probes, illustrated in Fig.2.3(c). With the TOA, the

evanescent field generated by the aperture is additionally enhanced and confined by the
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small tip. The presence of the small tip thus addresses both main problems of aperture

SNOM, namely the poor topographic resolution and the transmission-resolution tradeoff.

Nevertheless, a widespread usage of TOA probes is still hindered by the very demanding

fabrication procedure. Furthermore, the aperture limits the range of wavelengths the TOA

probes transmit sufficiently well and renders them unsuitable for operation with IR and

longer wavelengths.2.3 Sattering-type Near-�eld Optial Mirosope
Based on the presented overview of imaging techniques, the apertureless or scattering-type

scanning near-field microscopy (s-SNOM) can be identified asthe only method offering

nanometer-scale optical resolution in the mid-infrared spectral range. The investigation of

optical properties in the mid-IR spectral range is in turn motivated by the fact that mid-IR

photon energies correspond to the energies of vibrational modes of chemical bonds be-

tween atoms in molecules and crystals. The vibrational energy spectra are highly specific

to each kind of molecule or crystal and are thus often regarded as ”fingerprints” of a mate-

rial’s chemical composition and structure. The sensitivity of IR s-SNOM (also named the

scattering-type Scanning Near-field Infrared Microscope,s-SNIM [61]) to chemical com-

position has already been demonstrated several times [44, 46, 62–65]. One of the topics

elaborated in this thesis is the extension of the s-SNOM application range from analyzing

the chemical composition to the investigation of the crystal structure [66, 67], presented in

Chapter 7.

As a reference for the further analysis of the s-SNOM principles and applications, the

anatomy of the scattering type near-field optical microscope used in this work is presented

in Fig. 2.4. The description of its functional units is provided in the following sections.

More details about this setup can also be found in [68].2.3.1 Atomi Fore Mirosope
The atomic force microscope (AFM) shown on the left-hand side of Fig. 2.4 represents

the core upon which the s-SNOM is built. It consists of a piezoelectric scanner capable

of positioning the sample with nanometer precision in the x-and y-directions and with

angstrom precision in the z-direction.
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Figure 2.4: Schematic representation of the s-SNOM setup. Adapted from [45].

The probing tip is affixed to the bottom side of the cantilever. The cantilever is driven

to oscillation in z-direction at its resonant frequencyΩ, with an amplitude of about 20 to

50 nm. The probe and the sample are maintained at such a distance that the probe touches

the sample surface once per oscillation period. This mode ofAFM operation is known as

the ”tapping” or intermittent contact mode.

The amplitude of the cantilever vibration is monitored by reflecting a focused laser beam

from the top side of the cantilever and detecting it by a four-segment photodiode which is

sensitive to the beam deflection from its central position. The measured vibration amplitude

is used to regulate the tip-sample distance in a closed loop that moves the sample away from

the tip if the vibration amplitude decreases below a preselected value (set point), and the

other way around. By recording the vertical position of the sample as a function of its

lateral position, a three-dimensional relief or topography of the sample is acquired.2.3.2 Probe Illumination
What distinguishes a s-SNOM from an ordinary AFM is the presence of an additional

high-power laser which is focused onto the probing tip. The light from this laser polarizes

the probing tip which responds by emitting scattered radiation in all directions. The light

scattered back along the illumination path is collected andrecorded as the optical signal.

It is important to note that the optical near-field interaction between the probe modifies the

amplitude and phase of the scattered light and thus enables an optical map of the sample to

be constructed.

For the experiments described in this thesis, a CO2 laser tunable in the 9−11 µm wave-
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length range was employed as the light source. Reflective optical elements were used to

steer, focus and collect the light in order for the same path to be usable both with invisible

IR beam and with auxiliary visible beam which served as the aid for adjusting the optical

components.2.3.3 Detetion of Sattered Light
There are several known methods to detect the light scattered by a s-SNOM probe. A de-

tailed analysis and comparison of these methods is presented in Chapter 6. Measurements

presented in this work were carried out using an interferometric setup shown in Fig. 2.4.

It is based on a Michelson interferometer whose reference mirror is either moved between

two positionsλ/8 apart in a stepwise fashion (Sect. 6.3.3), or continuouslyvibrated with

an amplitude equal to 0.21λ (Sect. 6.4.2). In both cases the use of an interferometer serves

to coherently amplify the signal and, more importantly, to obtain the information about the

scattered signal amplitude and phase.

However, the useful information about the sample is not directly obtained form the total

light intensity measured by the detector. Rather, the demodulation of the detector output

voltage at an integer multiple of the probe vibration frequency (higher harmonic) is neces-

sary for obtaining reproducible high-resolution optical map of the sample. The reason for

this is explained shortly.2.3.4 Demodulation of the Detetor Output
It was already mentioned in the introduction that there are two contributions to the light

scattered by the probing tip. One of them depends on the near-field interaction between

probe and the sample and represents the useful signal, also known as the ”near-field signal”.

The other part consists of the reflections from optical elements and the direct scattering by

the probing tip, both completely independent of the near-field interaction. This part is not

useful in optical imaging and represents the unwanted s-SNOM background signal. It has

been observed that the light scattered by a probing tip contains much larger proportion of

the background than the near-field signal [69].

Fortunately, the background varies only slightly with the change of the tip-sample distance

as long as it remains on the order of the tip radius. Over the same distances, the evanescent

fields which mediate the near-field interaction vanish almost completely, as described in
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Sect. 4. It is therefore clear that for slight displacementsof the probe just above the sample

surface, the change in the scattered field will be mostly caused by the change in the near-

field interaction strength, rather than the background scattering. The small movements of

the probing tip required to separate the near-field from the background signal are usually

obtained by vibrating the probing tip in the intermittent contact with the sample surface. If

we denote the tip vibration frequency byΩ, the periodic detector output signalu(t) can be

expressed in the form of the Fourier series

u(t) =
∞

∑
n=∞

uneinΩt (2.2)

with u−n = u∗n since the functionu(t) is always real. Only the first few terms in this series

are usually sufficient to account for the slow change in the background signal. It was ex-

perimentally determined that already the first two terms (|n|= 0,1) at infrared frequencies

and three terms (|n| = 0..2) at visible frequencies suffice[69]. Further terms (|n| ≥ 2, i.e.

|n| ≥ 3) are needed to represent the rapidly changing near-field signal. It is therefore ex-

actly those higher harmonics that should be recorded in order to extract the pure near-field

contribution to the scattering signal.

Mathematically, the coefficientsun in the Fourier series from Eq. 2.2 are obtained from the

measured detector output voltageu(t) as

un =
1
T

∫ T/2

−T/2
u(t)e−inΩt dt. (2.3)

In practice, a lock-in amplifier can be used to extract singlecoefficientsun. Alternatively,

a data acquisition system capable of performing Fast Fourier Transform (FFT) can be em-

ployed to calculate several coefficientsun in parallel.

The exact detector output voltage in each particular experiment depends on several param-

eters beyond the near-field interaction. These parameters include the detector responsivity,

illumination intensity and incidence angle, numerical aperture of the objective used for

light focusing and collection, the shape of the probing tip,and so on. To be able to com-

pare the results of the measurements made in different experimental conditions, it is thus

customary to consider only therelative contrastsbetween different regions in the optical

map of the sample.
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Figure 2.5: Point dipole model of the probe-sample interaction for perpendicular (left)
and parallel (right) orientations of the probe dipole with respect to the sample
surface.

There exists a simple model for predicting relative s-SNOM contrasts between different

materials. It is known as the (point) dipole model, first developed in the context of Ra-

man scattering [70, 71] and later reused to describe the probe-sample interaction in the

apertureless near-field optical microscopy [57, 72, 73].

Within the point dipole framework, the probing tip is represented by a point dipole assum-

ing the position and polarizability of a sphere of radiusR inscribed into the probing tip

apex as depicted in Fig. 2.5. The dipole polarizability consequently equalsα = 4πR3(ε −
1)/(ε + 2) and the dipole moment induced by the external illumination is p = αE0, with

E0 being the strength of the illumination electric field.

The second constituent of the point dipole model is the ”mirror image” of the probe dipole,

formed in the sample. For the tip dipolep normal to the sample surface (Fig. 2.5, left), the

mirror dipole has the strengthp′ = β p, with the ”reflection coefficient”β = (εs−1)/(εs+

1) andεs the dielectric constant of the sample. The mirror dipole acts back on the probe,

thereby polarizing it even stronger. This additional probing dipole moment increases the

strength of the mirror dipole, which in turn induces furtherpolarization of the tip, and so

on.

Mathematically, such an interaction can be expressed in theform of an infinite geometric
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series

p = p0

∞

∑
n=0

gn, (2.4)

with p0 being the initial dipole moment. The factorg = ∆p/p represents the relative in-

crease in the probe dipole momentp after a single reflection from the sample. When the

infinite sum in Eq. 2.4 is evaluated, the dipole momentp represents the total dipole moment

of the tip as a result of its interaction with the sample.

An alternative way to obtain the dipole momentp relies on the self-consistency condition.

We start by noting that the mirror dipole strengthp′ includes the initial probe dipole mo-

mentp0 and the interaction-induced partpi . Sincepi is induced byp′, we get the following

system of equations:

p′ = β (p0+ pi), (2.5)

pi = f p′,

where f is a so far undetermined function of the distance between thetip and the sample.

Insertingp′ from the upper equation 2.5 into the lower one, we obtainpi = β f (p0 + pi).

Substitutingpi = p− p0 andβ f = g, this can be expressed as

p = p0+g p. (2.6)

Equations 2.4 and 2.6 describe the same physical situation so their solutions must be equal.

And indeed, in both cases we obtain

p =
p0

1−g
. (2.7)

The function f contained ing = β f should be determined at this point for a complete

solution. Its value depends on the orientation of the dipole, as will be shown next.

Let us first consider the dipole oriented perpendicularly tothe sample surface (i.e. parallel

to the z-axis), shown in Fig. 2.5 left. Following the coordinate system choice of Fig. 2.5,

this orientation can also be named the z-orientation. If thedistance between the sphere

representing the tip and the sample isH, the separation between the point dipole and its

mirror image isD = 2(R+H). The field produced by the mirror dipolep′ at the position
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of the tip dipolep is equal to

Ez =
p′

2πD3 (2.8)

The field Ez induces a dipole moment∆p = αEz in the probe. The functionf is thus

fz = ∆p/p′ = α/2πD3. Expressing the distanceD in terms of the tip-sample separationH,

the factorg in Eq. 2.7 becomesgz = β fz = βα/16π(R+H)3. We can thus assemble the

final solution for the vertical tip dipole moment

pz = E0
α

1− α β
16π(R+H)3

. (2.9)

Instead of the dipole moments, it is customary to use the effective polarizabilityαeff =

p/E0. The value ofαeff,z is obvious from Eq. 2.9:

αeff,z =
α

1− α β
16π(R+H)3

. (2.10)

For a dipole oriented parallel to the sample surface (x-axisin Fig. 2.5), its mirror image

exhibits an anti-parallel orientation, i.e.p′ =−β p. The mirror dipole field at the tip dipole

position has also got a negative sign and equals

Ex =− p′

4πD3 . (2.11)

This results inqx = β fx = βα/32π(R+H)3 and the final expression analogous to Eq. 2.10

is then easily obtained:

αeff,x =
α

1− α β
32π(R+H)3

. (2.12)

Due to the linearity of the system there is no cross-talk between the parallel and the per-

pendicular dipoles, so that any dipole orientation can be decomposed into thez- andx-

orientations. However, this is rarely needed if the true tipresponse is to be mimicked be-

cause an elongated probing tip has a high preference for the field along the z-axis, making

it the only component worth considering. An exception may bethe illumination containing

only the x-component of the field (e.g. s-polarized light), which only probesαeff,x. But in

this case the signal level would be very low due to the missingfield enhancement by the

probe.

If a dipole is driven by an oscillating field, it will respond by an oscillating dipole moment.
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Far away from the dipole, its radiated field approaches the form of a spherical wave. The

field oscillation amplitude is thereby directly proportional to the dipole momentp and thus

to αeff as well. The knowledge of the effective polarizability of the tip thus is sufficient to

predict therelativesignal strength detected in the far field. It is thereby customary to define

the scattering coefficientσ = sei ϕ as the ratio of the incident fieldE0 and the scattered field

E at some point in space:

E = σ E0. (2.13)

Sinceσ defined this way is proportional to the effective polarizability αeff, the following

identity holds for any two materials 1 and 2 whose response ismeasured in the same setup

and under the same conditions:

αeff,1 : αeff,2 = σ1 : σ2. (2.14)

In other words, the quantitiesσ and αeff can be used interchangeably as long as only

relative contrasts are measured.

Finally, it should be noted that the point dipole model was originally introduced in a slightly

different form than used in some later publications [46, 74,75] and presented here. The

original version included the radiation of the mirror dipole to give [57]

αeff =
α(1+β )

1− α β
16π(R+H)3

. (2.15)

This approach was followed in numerous later publications.A modification of the original

expression (Eq. 2.15) was also suggested, with an additional factor (1+ rp) accounting for

the indirect illumination of the tip via the reflection from the surface[76]. Therebyrp stands

for the Fresnel reflection coefficient of the p-polarized light. In Sect. 5.2 it will be shown

that, strictly speaking, none of the above variants is completely correct, and the proper way

to handle the mirror dipole radiation will be derived.

Finally, it should be noted that due to its simplicity, the dipole model lends itself well to

extensions. In particular, an analytical solution has beenobtained for systems consisting

of up to four mutually interacting dipoles [75].
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The full power of infrared near-field microscopy is revealedonly in conjunction with spec-

troscopy. Infrared nano-spectroscopy resulting from thiscombination can exploit vibra-

tional fingerprints of molecules and crystals to provide chemical and structural analysis of

specimens with the resolution on the order of 10 nm [44, 64, 67]. However, the current

s-SNOM state of the art permits imaging only at one fixed wavelength at a time. Although

indications exist that true parallel near-field spectroscopy may be possible [77], the devel-

opment has not yet matured to the point where it could be used for routine measurements.

For the time being, the near-field spectroscopy has to be performed sequentially, following

the procedure outlined below.2.5.1 Constrution of Near-�eld Spetra
To construct a complete near-field spectrum of a specimen, the scattering signal resulting

from the near-field interaction between the tip and the sample has to be recorded at a

number of wavelengths. For a successful material identification it is also necessary that the

said wavelengths cover the spectral region where the vibrational modes of the investigated

molecule or crystal can be excited. Once a sufficiently broadspectral region has been

covered and the desired density of wavelengths has been reached, the near-field spectrum

can in principle be assembled from those measurements.

However, the scattering signals recorded at different wavelengths cannot be directly com-

pared to each other because of the varying laser power, beam alignment and phase, detector

sensitivity and probing tip radiation pattern, which can all change with the wavelength. To

overcome this problem, the measured material response at each wavelength must be nor-

malized to the response of a reference material which is known to exhibit no spectral vari-

ation over the wavelengths of interest. In the mid-IR, the most commonly used reference

materials are gold and undoped silicon. It is thereby important to measure the signal from

the reference material under exactly the same conditions asthe signal from the investigated

material. In practice, this usually means that both the signal from the investigated material

and the reference material should be acquired in a single scan. To facilitate this, a thin

(30-60 nm) Au film is often evaporated on a part of the sample surface and the scan region

is chosen such that it includes a portion of the surface covered by the Au film.

The normalized signal may finally be assembled into a near-field spectrum which can be
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compared with other experiments or theoretical predictions.2.5.2 Phonon-enhaned Near-�eld Interation
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Figure 2.6: Dipole model prediction for the amplitude (a) and phase (b) of the s-SNOM
signal vs. real partε ′ of the sample dielectric function. The imaginary part ofε
is set toε ′′ = 0.2 and the tip radius and vibration amplitude are set toR= 35 nm
and A = 25 nm, respectively. The signal is normalized to the response of a
perfect electric conductor.

One intriguing theoretical prediction of the dipole model is the existence of a near-field

resonance where the real partε ′ of the sample dielectric functionε = ε ′ + i ε ′′ assumes

values close toε ′ = −2, accompanied by low values of the imaginary partε ′′. This res-

onance is clearly seen in Fig. 2.6(a) displaying the predicted effective polarizabilityαeff,z

of the coupled probe-sample system as a function ofε ′ in the overall dielectric function

ε = ε ′+0.2i .

Such near-field resonances indeed exist and have been first observed using crystalline sil-

icon carbide (SiC) as the sample and infrared light with wavelengths between 9.2 µm and

11.2 µm [63]. The near-field spectrum of SiC typically obtained by s-SNOM within the

aforementioned wavelength range is shown in Fig. 2.7(b). The observed phenomenon is

attributed in [63] to the phonon-enhanced near-field interaction since it relies on resonant

excitation of the crystal lattice vibrations in the sample.The physics behind this effect is

elaborated in more detail in Ref. [68] and also in Chapter 3 ofthis thesis.

Since the position and the height of the spectral peak related to the near-field resonance de-

pend on the energies of vibrational modes in the examined crystal, they are highly material-

specific, just like the far-field IR spectra. This provides the opportunity for infrared spec-

tral fingerprinting with ultra high resolution, better thanλ/500 [66, 67]. Unfortunately, by
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Figure 2.7: Second-harmonic (a) amplitude and (b) phase spectra of a crystalline SiC sam-
ple normalized to Au. Shown are experimentally obtained data (points, full
line) and the prediction by the dipole model (dashed line), obtained with the
SiC optical constants from [78]. The probing tip radius wasR= 35 nm and the
vibration amplitudeA = 25 nm.

comparing the experimental spectra and theoretical predictions in Fig. 2.7 (a) and (b), we

see that although there is aqualitativeagreement between them, the agreement isquantita-

tively not very good. Unambiguous material identification from thenear-field spectra thus

requires an improvement in the theoretical description of the probe-sample interaction and

motivates the development of a new model in Chapter 5.
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Sect. 2.4 introduced the dipole model of the probe-sample interaction in the scattering-type

near-field optical microscopy. This model represents the s-SNOM probe by a point dipole

to which the sample responds by a redistribution of charge close to the surface. Above

the surface, the electric field due to the polarization of thesample is equivalent to the field

that would be produced by a ”mirror image” of the probe dipolebelow the sample surface

(Fig. 2.5). In the quasi-electrostatic limit, the ratio of the image dipole momentp′ to the

probe dipole momentp is equal to

β =
p′

p
=

εs−1
εs+1

. (3.1)

An interesting property of the electrostatic ”reflection coefficient” β is its ability to assume

absolute values significantly larger than 1 under special circumstances. The denominator

in Eq. 3.1 indicates that this happens when the dielectric function εs = ε ′s + i ε ′′s is close

to ε ′s = −1 simultaneously withε ′′ < 1. However, such values of the dielectric function

are not encountered in electrostatics at all. They are not very common in electrodynamics

either, since dielectrics are characterized byε ′s≥ 1, and metals have largely negativeε ′s and

high values ofε ′′s . Nevertheless, many materials, including all metals and semiconductors

as well as some insulators are characterized by at least one narrow material-specific range

of wavelengths with the dielectric function close toεs≈−1. As we have seen in Sect. 2.5,

such situations are of special importance in the near-field microscopy because they give

rise to near-field resonances. The attention will be now briefly devoted to the analysis of

physical mechanisms responsible for the negative values ofthe dielectric function, first

from the classical and then from the quantum-mechanical point of view.
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In a very simple classical approximation, the sample is treated as a collection of uncoupled

(mechanical) harmonic oscillators each with massm and force constantk. The oscillators

couple to the electric field through their dipole momentpx, related to the oscillator elon-

gationx aspx = ex. This approximation is known as the Lorentz oscillator model and its

short outline will be presented here. For a more detailed treatment, standard textbooks such

as [79] or [80] can be consulted.

If the Lorentz oscillators are driven by the external electric field of the formE0e−iωt , their

equation of motion reads

mẍ+ γ mẋ+kx= eE0e−iωt , (3.2)

where a phenomenological damping termγ mẋ has been additionally included. The ampli-

tude of the steady-state solution of Eq. 3.2 is given by

x0 =
eE0/m

ω2
0 −ω2− i ω γ

, (3.3)

whereω0 =
√

k/m.

From the dipole moment amplitudep0 = ex0 we obtain the polarizability

α =
p0

E0
=

e2/m

ω2
0 −ω2− i ω γ

. (3.4)

A regular three-dimensional array of Lorentz oscillators with a volume density N has the

polarization density equal to

P = NαE0 =
N e2/m

ω2
0 −ω2− i ω γ

E0. (3.5)

From Eq. 3.5, the susceptibilityχ(ω)=P/E0 can be directly extracted:

χ(ω) =
N e2/m

ω2
0 −ω2− i ω γ

, (3.6)

and therewith the dielectric functionε(ω) = χ(ω) + 1, which can also be written in the

form

ε(ω) =
f

ω2
0 −ω2− i ω γ

+1 (3.7)
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with f = N e2/mbeing the oscillator strength. However, a single oscillator experiences not

only the external driving field, but also the field due to its neighbors. This effects leads to

the following relation between the dielectric functionε(ω) and the polarizabilityα(ω):

ε(ω)−1
ε(ω)+2

=
Nα(ω)

3ε0
, (3.8)

also known as the Clausius-Mossotti equation.

In the case of weak damping, the dielectric function obtained from 3.8 can still be put in

the form of Eq. 3.7 by shifting the eigenfrequencyω0 to ω ′ = ω0− f/3.

Finally, it should be noted that more than one type of oscillators can exist in a given mate-

rial. The dielectric function is then obtained by summing the susceptibility over all reso-

nances:

ε(ω) = 1+∑
j

f j

ω2
j −ω2− i ω γ j

, (3.9)

whereω j , f j andγ j are the natural frequency, oscillator strength and dampingcoefficient

pertaining toj-th resonance, respectively.

If some resonance frequencyω0 is well separated from all otherω j , j 6= 0, the dielectric

function in the vicinity ofω0 can be described in a very simple way. To this end, the

influence of all resonances belowω0 (ω j ≪ ω0) can be neglected, and the contribution of

resonances aboveω0 (ω j ≫ ω0) can be collected into the single term

ε∞ = 1+ ∑
ω j>ω0

f j

ω2
j

. (3.10)

The dielectric function aroundω0 is then given by

ε(ω) = ε∞ +
f0

ω2
0 −ω2− i ω γ0

. (3.11)

Eq. 3.11 will be used in the following to determine when the reflection factorβ in Eq. 3.1

is expected to peak.

A typical behavior of the dielectric functionε and the electrostatic reflection factorβ is

shown in Fig. 3.1. Both quantities were calculated according to Eq. 3.11 with the following

parameters:ε∞ = 6.56, f0 = 2×106cm−2, ω0 = 797cm−1 andγ0 = 6cm−1, which provide

an approximate fit to the SiC crystal dielectric function.

From Fig. 3.1 we see that there are two frequencies where the real part of the dielectric
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Figure 3.1: Real (full line) and imaginary part (dashed line) of (a) the SiC dielectric func-
tion εs, and (b) the quasi-electrostatic reflection coefficientβ = (εs−1)/(εs+
1) as a function of the frequencyω.

function assumes the valueε ′s ≈ −1. The lower of them lies just above the resonance

frequencyω0. However, at this frequency the phase between the driving field E0 and the

material polarizationP is around 90, implying that the velocity (or current) is in phase with

the driving force (i.e. electric field). In such a situation the energy is efficiently dissipated

by the oscillator, resulting in a large imaginary partε ′′s of the dielectric function. Due to

the largeε ′′s , the reflection coefficientβ given by Eq. 3.1 does not exhibit a maximum at

this point. Instead, the maximum value ofβ is reached at the second frequency for which

ε ′s =−1, located just below the end of the negative-ε ′s range. The polarization lags behind

the driving field by almost 180, so the absorption is low at that point. The low value of

ε ′′s permits the reflection factorβ to assume large values, limited only be the damping

coefficientγ0.3.2 Bulk Polaritons
The Lorentz oscillator model used so far represents a purelyclassical description of the

material response to the EM field. A more accurate quantum-mechanical treatment of the

light-matter interaction yields the result in the same formas the Eq. 3.7[81]. However,

the oscillator strengthf has to be calculated in a different way because the quantum-

mechanical description of the system departs substantially from the Lorentz oscillator

model. In particular, the classical oscillator is replacedby a quantum system capable of

making transition between two statesj andl whose respective energy levels are separated

by ∆E = h̄ω0. The overall oscillator strengthf resulting fromN such uncoupled oscillators
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per unit volume is then given by

f =
2Nω0

ε0h̄
|HD

jl |2, (3.12)

whereHD
jl = 〈l |er| j〉 is the matrix element of the dipole transition between the statesj and

l . For dipole-forbidden transitions, quadrupole matrix elements should be taken instead

of HD
jl . However, they are much weaker than the dipole transitions and generally do not

suffice to make the dielectric function negative. In any case, the calculation of the oscil-

lator strengthf from first principles is a demanding task. Rather than from Eq. 3.12, the

oscillator strength is thus in practice usually determinedby measuring the reflectivity of

the sample and fitting the measured values to Eq. 3.11.

Apart from the aforementioned quantitative difference between the classical and the quantum-

mechanical treatment of the light-matter interaction, there is also a qualitative one. In par-

ticular, the classical picture allows for an arbitrary oscillation amplitude and consequently

an arbitrary oscillator energy. On the other hand, a quantum-mechanical harmonic oscilla-

tor is quantized, i.e. possesses only discrete energy levels. Furthermore, the quantization

applies equally well to the electromagnetic field oscillations and the oscillations in matter

involving either single particles or collective oscillations of many particles. The quanta of

electromagnetic field are thereby known as photons, and the quanta of oscillations in matter

are named according to the nature of the oscillation. For example, collective oscillations of

electrons against the ions in a metal (”plasma oscillations”) have quanta know asplasmons

[82]. Analogously, the crystal lattice vibrations havephonons [83] as their quanta, and the

excitation of electron-hole pairs in semiconductors appears in quanta known asexcitons

[84–86].

Of particular interest here is the coupling between the electromagnetic waves and the os-

cillations in matter. For this coupling to be efficient, it isnecessary that the oscillations

in matter be associated with the polarization of the material. For plasmons and excitons

this is always the case, whereas the phonons can exhibit thisproperty only in polar crys-

tals, i.e. crystals with at least partially ionic character. In addition, the interaction of light

with phonons is only possible for optical phonons, characterized by atoms in the unit cell

oscillating against each other. This is in contrast to acoustic phonons, where atoms in a

unit cell oscillate in phase with each other, so their oscillations are not accompanied by a

polarization unless the material is piezoelectric.

In all cases where the electromagnetic waves couple to the polarization waves in matter,
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mixed modes are formed. Quantum mechanics requires those mixed waves to be quan-

tized, and the resulting quanta are quasi-particles known as polaritons [87, 88]. In par-

ticular, when photons couple to plasmons, the resulting quasi-particles are called plasmon

polaritons. In case of photon-phonon coupling we get phononpolaritons, and so on. Since

the polaritons are formed by coupling of two bosons, they also possess integer angular

momenta.

Properties of all kinds of polaritons largely depend on the energy difference between pho-

tons and the quanta of matter polarization. When the energy mismatch is large, it is cus-

tomary to describe the resulting polaritons as photons propagating in a dielectric medium

with ε ≥ 1. Such approach is also supported by the polaritons’ dispersion relation, which

is in the region of weak coupling just a straight line with theconstant slopeω/k = c/
√

ε.

This can be seen in the lower part of Fig. 3.2 which contains a plot of the dispersion re-

lation derived from the dielectric function in Fig. 3.1(a).It should be noted that although

this dispersion is based on the classical model (Eq. 3.11), it is consistent with the quantum-

mechanical results [81].
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Figure 3.2: The dispersion relationω = ck/
√

ε of phonon polaritons in a SiC crystal, de-
rived form the dielectric function shown in Fig. 3.1(a). Thefull line represents
the real part of the wave vector, and the dashed line the imaginary part. The
dotted line depicts the wave vector of the photons in vacuum (i.e. the light line).

As the photon energȳhω approaches̄hω0, the coupling between electromagnetic and polar-

ization waves becomes stronger. Photons gain additional momentum due to this coupling
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and their dispersion relation deviates from the straight line. This is also accompanied by

a fast rise in the imaginary partk′′ of the wave vectork, represented by the dotted line in

Fig. 3.2. Large values ofk′′ signify a rapid extinction of the polaritons as they propagate

through the material. By comparing Fig. 3.2 and Fig. 3.1(a),we can conclude that the ex-

tinction around the frequencyω ≈ ω0 is mainly due to absorption because of large values

of ε ′′ aroundω ≈ ω0.3.3 Surfae Polaritons

Figure 3.3: Surface polaritons propagating along the interface between two materials with
opposite signs of their dielectric function. In the direction perpendicular to the
surface, the electric field of surface polaritons decays exponentially.

Going to frequenciesω aboveω0, the imaginary partk′′ of the wave vector remains large

over the entire range of frequencies with negativeε ′. In the range of negativeε ′, the po-

larization in the material opposes the external electric field and causes the photons to be

reflected from the sample surface, thus again contributing to the extinction of polaritons.

Obviously, polaritons cannot propagate through the material in this frequency range. Nev-

ertheless, modes exist that propagatealong the surfaceof the sample and are evanescent

perpendicular to the surface, as illustrated in Fig. 3.3. Such modes are known assurface

polaritons and they obey a dispersion relation different from the bulk (volume) polaritons

[89–91]. On the interface between a medium with a dielectricconstantεm and a material
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with a dielectric functionε(ω) the dispersion relation of surface polaritons is given by:

kSP=
ω
c

√
ε(ω)εm

ε(ω)+ εm
. (3.13)

A plot of this relation is shown in Fig. 3.4 using the same parameters as for the volume
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Figure 3.4: The dispersion relationω = ck/
√

ε/(ε +1) of the surface phonon polaritons
on an interface between a SiC crystal and vacuum calculated using the dielec-
tric function from Fig. 3.1(a). Shown is the negative-ε frequency region be-
tweenωTO = 800cm−1 andωLO = 970cm−1. The full line represents the real
part of the wave vector, and the dashed line the imaginary part. The dotted line
depicts the wave vector of the photons in vacuum (i.e. the light line).

polaritons in Fig. 3.2. We see that the momentumh̄kSPof surface polaritons is in principle

larger than the momentum̄hω/c of photons outside the sample. Where this is true, the

surface polaritons can neither be directly excited nor can they radiate into free space if the

surface of the sample is flat. Alternatively, when the momentum of surface polaritons is

smaller than the momentum of photons, the surface polaritons are no more bound to the

surface and thus quickly cease to exist.

The boundaries of the spectral region with negativeε ′ bear special meaning and names

depending on the kind of polaritons they are associated with. In connection with the lattice

oscillations, the lower boundaryω0 is known as the transverse optical phonon frequency,

denoted byωTO. The upper boundaryε ′(ω) = 0 is the longitudinal optical phonon fre-
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quency,ωLO. Its name is derived from the fact that in the absence of damping, the po-

larization field in the material is equal and opposite to the driving field and thus cancels

it, making the existence oflongitudinal optical waves possible at this frequency. These

longitudinal waves are pure polarization and not really electromagnetic waves since they

are characterized by vanishing magnetic fieldH and inductionB. Being longitudinal, they

also do not couple directly to the free-propagating light which consists of transverse waves

only.

In metals, conduction electrons are usually depicted forming a free electron gas. Since

the conduction electrons are free to move through the metal,there is no restoring force

associated with their displacement and the natural frequency ω0 of their oscillations is

equal to zero. The restoring force appears only when electrons attempt to move out of the

metal. This is the case for collective oscillations of electrons against the positive ions in the

metal. Such longitudinal oscillations are known as electron plasma oscillations and their

eigenfrequency is the plasma frequencyωP. From the perspective of polaritons, the plasma

frequencyωP plays the same role for plasmon polaritons as the longitudinal optical phonon

frequencyωLO does for phonon polaritons.

Finally, it should be added that the frequenciesωTO and ωLO (or their analogs) are not

independent of each other. In general, the following relation between the two frequencies

and the oscillator strengthf holds:

ω2
LO = ω2

TO+
f

ε∞
. (3.14)

Eq. 3.14 is a variant of the Lyddane-Sachs-Teller equation [92] and enables the oscillator

strength to be determined if the frequenciesωTO and ωLO are known together with the

high-frequency dielectric constantε∞. All these quantities can experimentally obtained

from e.g. reflectivity measurements or with the aid of Raman spectroscopy.

The remaining oscillator parameter is the damping coefficient γ which is much harder to

determine. Nevertheless, a rough comparison of the dampingcoefficients pertaining to dif-

ferent kinds of polaritons can be made. Instead of the damping coefficientγ, the oscillator

relaxation timeτ = 1/γ is often specified. Phonons in defect-free crystals have in general

relatively long relaxation times, on the order ofτ = 10−12 s. With the notable exception of

silver, the relaxation time of plasmons in metals is one to two orders of magnitude shorter

than that of phonons. On the other hand, the relaxation time of excitons in semiconductors

may vary over several orders of magnitude depending on the preparation and purity of the
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sample.

Since the strength of the near-field resonance observed in s-SNOM is ultimately limited

by the damping of the polaritons, we can conclude that the phonon polaritons should yield

the strongest near-field resonances. In Chapter 7 it will be shown how this resonances can

be utilized as a very sensitive method for analyzing the crystal structure on the nanometer

scale. Another, very intriguing application of surface phonon polaritons is the coherent

emission of thermal radiation [93], enabled by the diffraction of surface phonon polaritons

by a grating etched in the surface of a SiC crystal [94].

For the near-field microscopy it is important to note that thedensity of surface polari-

ton states,dkSP/dE peaks around the frequencyωSP whereε ′(ωSP) = −εm, which is the

same frequency where the quasi-electrostatic reflection coefficient β has a maximum. It

might therefore seem logical to ascribe the near-field resonance described in Sect. 2.5 to

the excitation of surface polaritons. However, in Sect. 5.2it will be shown that the waves

participating in the near-field interaction between a sample and a probing tip have spatial

frequencies far above the spatial frequency of both propagating surface polaritons and vol-

ume polaritons. For this reason, the distinction between the type of polaritons does not

seem to be of importance in the context of s-SNOM near-field resonances.

Nevertheless, surface polaritons lend themselves naturally to the investigation by scan-

ning near-field optical microscopy which is a surface scanning method by design. SNOM

and the closely related scanning photon tunneling microscopy (PSTM) have been often

employed for mapping the surface polariton propagation through various structures such

as fabricated waveguides [95] and corrugated surfaces [96]. By making a series of such

measurements at different illumination frequencies, the dispersion curve of the surface po-

laritons can be traced out [97].

It is interesting to note that the surface polaritons are also responsible for the existence

of the near-field ”perfect lens” [98]. The near-field perfectlens comprises only a slab of

material withε = −εm and produces an almost perfect image of the source at a distance

ximage= d− xsource, whered represents the lens thickness. Image formation is thereby

mediated by surface polaritons whose dispersion relation,Eq. 3.13, yields infinitely large

wave vectorskSP for ε = −εm , hence posing no limit to the spatial frequencies which

can be transferred by surface polaritons. However, the condition ε = −εm can be exactly

satisfied only in the absence of damping. In practice, the finite dampingε ′′ 6= 0 limits

the magnitude ofkSP as shown e.g. in Fig. 3.4 and degrades the perfect lens properties
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exponentially with the lens thicknessd. The resolution of a ”perfect lens” is hence always

limited and such a lens is in general only useful in the near-field regimexsource≤ d ≪ λ .

Subwavelength resolution can nevertheless be achieved, aswas demonstrated using both

surface plasmons [99, 100] and surface phonon polaritons [101, 102].

One further peculiarity of surface polaritons is the existence of guided modes on cylindri-

cal or conical waveguides exhibiting no cutoff regardless of the waveguide diameter [103].

The surface polariton wave vector thereby rapidly increases with shrinking waveguide di-

ameter, resulting in the surface polariton super-focusingeffect [104–106] with potential

applications in near-field optical microscopy [107]. On theother side, thin rectangular

waveguides support surface polariton modes with largely sub-wavelength field confine-

ment and propagation length in the centimeter range [108–111]. They could provide the

basis for optical interconnects in integrated circuits andfor addressing individual elements

in such circuits [112–115].

3.4 Partile Polaritons
A particularly interesting situation arises when a material supporting surface polaritons

forms a small particle with the size much smaller than the light wavelength. Surface po-

laritons in such particles are localized in all three spatial dimensions and often referred to

as the particle polaritons [116, 117]. They are highly interesting because of the large field

enhancement they provide in the vicinity of resonantly excited particles [118]. The spectral

position and shape of such resonances, also known as Fröhlich resonances, depend on the

material the particle is composed of, as well as the particle’s shape. Analytical solution for

the field enhancement can be obtained in case of ellipsoidal particles with the semi-axes

c≤ b≤ a≪ λ . It turns out that a dipole mode is excited in such small particles, with the

maximum field enhancement at the surface of the particle given by

γ =
ε− εm

la(ε− εm)+ εm
, (3.15)

wherela is the depolarization or shape factor defined by

la =
∫ ∞

0

abc

2
√

(q+a)3(q+b2)(q+c2)
dq. (3.16)
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A maximum in the field enhancementγ occurs forε = εm(1−1/la) and is independent of

the particle size as long as the approximationa≪ λ is valid. In case of spherical particles

we havela = 1/3, andε =−2εm is the condition for the maximum field enhancement.

It has been proposed that a chain of closely spaced nano-particles similar in size should en-

able one-dimensional energy transport with lateral confinement on the subwavelength scale

by dipole-dipole coupling between the particles[119]. Experimental confirmation of the en-

ergy transfer in such an arrangement of particles and was provided in [120]. An alternative

arrangement ofn small particles of decreasing size in a self-similar chain was predicted

to have focusing properties [121]. In the self-similar chain, larger particles drive smaller

ones without being disturbed and an overall field enhancement of γn can be achieved. This

results in an efficient nanolens with potential applications in the near-field microscopy and

especially in particular single-molecule Raman spectroscopy which requires field enhance-

ments on the order of 103 for the weak Raman scattering to be detectable.

Nanoparticles can also act as a very efficient sensors when functionalized such that they

preferentially bind a certain target molecule. Binding of the target molecules modifies the

dielectric constantεm of the medium around the nanoparticle and causes a slight spectral

shift of the particle plasmon resonance [122]. This shift can be observed in the scatter-

ing spectrum of the functionalized nanoparticles even for avery small amount of target

molecules.

Finally, metallic nanoparticles can be enclosed in a dielectric shell of a givenεm and a

chosen thickness, or, alternatively, a dielectric core canbe coated by a metal shell to de-

liberately shift plasmon resonances to wavelengths between about 0.5µm and 5µm [123].

Tuning the absorption of nanoshells to aboutλ = 1.1µm, targeted and localized heating

can be achieved in living organisms since the physiologicalabsorption is very low in this

spectral region. This opens the possibility for targeted drug delivery and photothermal

therapy of tumors [124, 125].

The application mentioned above do not represent an exhaustive list. A vast effort has been

invested in the research of nanoparticles in the last decade, and with no sign of a decline.

Consequently, a number of novel applications of particle polartitons as well as methods

for fabrication and detection of polariton-supporting nanoparticles can be expected in the

future.
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In Sect. 2.1 it was mentioned that the diffraction of light limits the resolving power of

conventional optical elements such as lenses or concave mirrors. For the same reason,

these elements cannot be used to focus the light to dimensions below roughly one wave-

length (λ ). Near-field optical microscopy (Sect. 2.2) overcomes thislimitation by utilizing

a largely subwavelength light source located in the immediate vicinity of the sample.

Denoting the radius of a SNOM light source by∆ρ, and the spatial frequencies in the

plane containing the source byνρ , we can make use of the classical ”uncertainty relation”

∆ρ ∆νρ ≥ 1. This relation is applicable to any pair of variables related by the Fourier

transform, and in this particular case it yields∆νρ ≫ λ−1 since∆ρ ≪ λ . From the Fourier

optics it is well known that spatial frequenciesνρ > λ−1 represent exponentially decaying

(evanescent) waves. This means that the field near a SNOM light source is predominantly

evanescent.

Being related to high spatial frequencies (largeνρ ), the evanescent waves are the key to the

high resolution. However, the results of optical probing are recorded by a detector located

far away from the source in terms of the light wavelength. Obviously, the evanescent waves

do not extend to the detector and therefore do not contributeto the detected signal. In other

words, an attempt in high-resolution optical imaging basedon the strong field confinement

alone is not guaranteed to yield the desired information. Onthe contrary, this is only

possible if the evanescent fields can be converted into the propagating waves which then

convey the information to the detection point.

The two major SNOM probe types (Sect. 2.2) can now be comparedfrom this point of

view. Aperture SNOM utilizes a small opening in an otherwiseopaque screen to confine

the light. Apertures smaller than about half the wavelengthexhibit transmission efficiency

decreasing with the fourth power of the aperture size [126–128]. This results in a poor

coupling of evanescent into propagating waves for small apertures and effectively limits

the resolution of an a-SNOM to roughlyλ/10. In contrast, a long and sharp metallic tip
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of a s-SNOM is much more efficient in conversion between evanescent and propagating

waves because the movement of free charges is essentially unrestricted along the tip, i.e.

in the direction perpendicular to the sample surface. The confinement of charge by a s-

SNOM probe takes place only in the plane parallel to the surface. This plane is orthogonal

to the electric field oscillations, so the charge confinementdoes not impede the process

of absorption or radiation of electromagnetic waves. Owingto this property, the s-SNOM

exhibits a wavelength-independent resolution limited only by the radius of the probing tip

apex [45].

From the preceding description it is obvious that the shape and function of a s-SNOM

probe very much resemble those of an antenna. And indeed, thesimplest radio antennas

have the form of elongated metallic rods, with their length optimized for efficiency. In

the region of infrared and larger wavelengths their analogues can be easily imagined and

fabricated [129–131] since most metals are good conductorsat those wavelengths. In the

visible light range there are no such good conductors, but itis to some extent possible to

exploit small-particle plasmon resonances (Sect. 3.4 and 4.1) to achieve efficient coupling

between the near and far field [132, 133]. To compensate for the lack of good conductors at

visible light wavelengths, alternative antenna geometries have also been proposed, yielding

significantly higher field enhancements than elongated rodsor small spheroidal particles.

They include bow-tie antennas [134–136], triangular [137]and C-shaped [138] apertures,

and even self-similar chains of small particles with progressively decreasing size [121].

This analogy between s-SNOM probes and antennas can be formalized by actually defining

the optical antenna as anobject or device which efficiently couples the free-space radia-

tion to highly localized electromagnetic field and vice versa [139]. From this definition,

one important difference between classical radio antennasand optical antennas follows:

whereas radio antennas have to transport as much charge as possible to one of their ter-

minals, for optical antennas it is additionally the concentration of this charge that matters.

The reason for this additional requirement on optical antennas can be understood by not-

ing that an optical antenna is more efficient if it produces stronger EM fields because this

leads to larger useful signals, and it is also better if it produces tighter field confinement

because this results in higher resolution. Fortunately, the charge confinement favorably af-

fects the field strength, so that both performance criteria can be simultaneously improved.

The proportionality between the charge concentration and the field strength is thereby often

attributed to the ”lightning rod effect” [140]. It relies onthe fact that the field strength near
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an equipotential surface is inversely proportional to the local radius of curvature. For the

near-field optical microscopy this means that in the wavelength range where good electric

conductors exist, sharper probes will produce both better field confinement and higher field

strength. In the remainder of this chapter, these two quantities will be studied in a more

quantitative manner.

4.1 Field Enhanement
A detailed numerical analysis of the field enhancement by s-SNOM probing tips can be

found in many papers, e.g. [141], [142], [143], [144], [145], [146], and [147]. However, an

analyticalexpression for the field enhancement would be more interesting in the context of

this work since it would permit the probe-sample interaction to be modeled in a relatively

simple way (Chapter 5). The best known analytically solvable approximation to the s-

SNOM probing tip is a prolate spheroid in a uniform electric field, treated in Refs. [71],

[70], [148], and [145]. The adoption of this model is justified by noting that the apex of a

typical probing tip does indeed look much like the apex of a spheroid. Furthermore, the tip

apex is also expected to be the decisive part for the near-field interaction with the sample

since it resides in the closest proximity of the sample. The largely different shape far away

from the apex certainly influences the radiation characteristics of the probe, but not the

nature of the probe-sample interaction which gives rise to contrasts in s-SNOM.

On the other hand, treating the illumination as a homogeneous field can only be a good ap-

proximation over short lengths. This sets an upper bound to the length of a probe which can

be accurately modeled in the electrostatic approximation.Based on electrodynamic calcu-

lations of the field enhancement by realistically modeled probes [143], one can conclude

that the spheroid length should be kept below aboutλ/4 in an electrostatic calculation.

Otherwise, the field enhancement can be significantly overestimated due to the neglected

dephasing effects.

Using an electrostatic approximation, the electric potential around the probing tip can

be approximated by the potentialΦ outside a prolate spheroid in a uniform fieldE0. In

spheroidal coordinates,Φ can be expressed as [145]

Φ = E0F η [ξ +A(−1+
ξ
2

ln
ξ +1
ξ −1

)], (4.1)
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whereA is a constant equal to

A =
(ε−1)ξo

ξ0
dQ1
dξ (ξ0)− ε L1(ξo)

.

The first term in Eq. 4.1,Φ0 = E0F η ξ , is the potential of the external field and the second

part is the potential of the spheroid, i.e. the induced charge. The notation used in the above

expressions and the rest of this section is explained in Table 4.1.

Variable Description

η,ξ ,ϕ spheroidal coordinates
Ln Legendre function of the second kind,n-th order
E0 external electric field strength, oriented along the long spheroid axis
ξ0 spheroid boundary
F half the distance between the spheroid foci
L length of the semi-major spheroid axis
R radius of the spheroid curvature at its apex

Table 4.1: Notation used in Eq. 4.1.

For convenience, equations transforming the spheroidal coordinates to the more familiar

cylindrical coordinates are provided:

ρ = F
√

(1−η2)(ξ 2−1), (4.2)

z = F η ξ , (4.3)

while the azimuthal angleϕ has the same meaning in both coordinate systems.

The electric fieldE outside the spheroid can be easily obtained as the negative gradient

of the potentialΦ. The final expression is rather complicated and the result isthus best

presented graphically. This has been done in Fig. 4.1 for a spheroid with semi-major axis

L and a curvature radius at its apexR= 0.1L.

Looking at the vector field plot in Fig. 4.1, it can be easily seen that the field close to the

spheroid ends looks much like a field of an extended dipole with its constituent charges

residing near the opposite end of the spheroid. This observation is one of the cornerstones

of the tip-sample interaction model derived later in Chapter 5.

Fig. 4.1 provides a qualitative insight into the field confinement and enhancement of the

prolate spheroid. For a quantitative analysis, the enhancement factorγ = E/E0 at the
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Figure 4.1: Electric field in the vicinity of a spheroid withR= 0.1L located in a uniform
external electric field oriented along the spheroid axis.

bottom of the spheroid can be derived from Eq. 4.1. For a pointat the intersection of the

surface and the axis of the spheroid one obtains

γ =
L(ε−1)(2F +R ln L−F

L+F )

2F(L− ε R)−LR(ε−1) ln L−F
L+F

+1 (4.4)

whereF is the focal distanceF =
√

L(L−R). For convenience, Eq. 4.4 can also be rewrit-

ten in terms of relative dimensionsr = R/L and f =
√

1− r:

γ =
(ε−1)(2 f + r ln 1− f

1+ f )

2 f (1− ε r)− r (ε−1) ln 1− f
1+ f

+1, (4.5)

The spheroid shape enters the right-hand side of Eq. 4.5 onlythrough the ratior of the

spheroid curvature radiusR to its half-lengthL. The field enhancementγ is thus com-

pletely determined by the ratior and the dielectric constantε of the spheroid. The field

enhancementγ as a function ofr andε is shown in Fig. 4.2. The dielectric constantε was

thereby taken in the Drude formε(ω) = ε∞−ωp/ω(ω + iγ) with ωp = 9eV, γ = 0.1eV
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andε∞ = 2 in order to obtain values similar to a real metal.
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Figure 4.2: (a) Field enhancementγ at the spheroid apex as a function of the spheroid
dielectric constantε(ω) = 2−9eV/ω(ω + 0.1i eV) and the ratior = R/L of
the spheroid curvature radius to its half-length, (b)γ as a function ofr for
ε ′ =−100, and (c) maximum field enhancementγ as a function ofr.

Two conclusions can be immediately drawn from Fig. 4.2(a) and the line profile along

ε ′ = −100 shown in Fig. 4.2(b). First, for eachr, the field enhancement at the surface of

the spheroid exhibits a sharp peak which shifts towards morenegativeε ′ (lower frequencies

ω) as the spheroid shape factorr decreases. This is a manifestation of the small-particle

plasmon resonance, explored in more detail in Sect. 3.4. Second, higher field enhancement

γ can be achieved with sharper tips (lowerr). This is quantified in Fig. 4.2(c) where the

maximum field enhancementγmax is shown as a function ofr. Based on an extrapolation,

it might seem that an arbitrary large enhancement can be achieved by decreasingr = R/L

sufficiently enough by making the spheroid very long (largeL) and thin (smallR). In prac-

tice, however, the length of the tip must be kept significantly below the light wavelength for
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the electrostatic approximation to be valid. Furthermore,the tip radius can only be reduced

down to a few nanometers before the bulk dielectric constantbecomes inappropriate for

describing the optical properties of the material [149]. For this reason the field enhance-

ment factors in the mid-IR range are limited to about three orders of magnitude in the best

case.

Refs. [145] and [143] contain a more detailed electrodynamic treatment of prolate spheroids

and a comparison with the electrostatic calculation of the type presented above. A good

agreement between the electrostatic and electrodynamic calculations can be inferred from

them for spheroids shorter than roughlyλ/5. Field enhancement factors up to several hun-

dreds are indeed obtained for thin spheroids even with the retardation effects included. In

the visible spectral range, such high field enhancement is attributed to the small-particle

plasmon resonances. In the infrared, the lightning rod effect on its own is sufficient to

achieve the same effect.4.2 Field Con�nement
Here we consider the second important aspect of the optical antenna function: the field

confinement. Based on Fig. 4.1, the confinement can already beestimated to be about one

spheroid apex radiusR. For a more quantitative analysis, Fig. 4.3 shows the horizontal line

profiles extracted at the bottom of the spheroid in Fig. 4.1.
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Figure 4.3: (a) Total field enhancement below the spheroid from Fig. 4.1 and (b) its two
orthogonal components:γz (full line) andγρ (dashed line).

As expected, the field enhancement in Fig. 4.3 drops to about half its maximum value

already one tip radiusR far form the axis. However, the curves in Fig. 4.3 can be used
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to estimate the resolution obtainable using such a tip for near-field microscopy purposes

only after the method of detection and the structure of the sample have been taken into

account. If the probing tip serves both to collect and to radiate light, a signal enhancement

proportional to the square of the field enhancement follows from the optical reciprocity

principle [150, 151]. Additionally, in the case of a non-interferometric signal detection,

photodetectors measure intensity of the emitted light, proportional to the square of the field

strength. This makes the cumulative enhancement of the detected signal proportional toγ4

when both aforementioned effects are combined. The enhancement factorγ4 applies to

the signal generated by linear processes like fluorescence or elastic and Raman scattering.

In the case of non-linear response associated with e.g. two-photon fluorescence excitation

[51] or second harmonic generation [49], the detected signal enhancement is proportional

to an even higher power of the field enhancementγ. The curve from Fig. 4.3(a) raised

to the appropriate power finally determines the point spreadfunction (PSF) of the near-

field optical microscope using a probing tip whose field enhancement is shown in Fig. 4.3.

The width of the PSF equals the optical resolution when imaging samples consisting of

point-like objects, i.e. objects much smaller than the tip radius. For extended objects

whose dimensions are comparable to or larger than the tip radius, the emitted signal can

be calculated as a convolution of the PSF and the object response. This issue will not be

pursued further since the standard FWHM resolution criterion is not applicable in such

cases and the results are dependent on the actual criterion used.
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5.1 Monopole Model5.1.1 Motivation
The efficiency of s-SNOM probes has been examined in Chapter 4. Based on an electro-

static model of the probing tip as a prolate spheroid, field enhancement and confinement

have been calculated. In the context of the near-field optical microscopy, these two proper-

ties determine the detected signal level and attainable resolution, respectively. At the same

time, they provide no information about one of the most fundamental issues in s-SNOM,

the optical contrast. In order to explain and predict optical contrasts, it is necessary to

understand the interaction between the probing tip and the investigated sample. An ac-

curate model of the tip-sample interaction is of particularimportance to the apertureless

near-field spectroscopy since it represents the key to the identification of materials based

on their spectral fingerprints.

The first attempt at describing the tip-sample interaction was the point dipole model [57,

70–73], described in Sect. 2.4. This model succeeds in aqualitativeexplanation of almost

all phenomena experimentally observed in s-SNOM imaging, including material contrasts

[44, 46, 64], near-field resonance [63] and its blue-shift with increasing probe-sample dis-

tance [61]. It is also simple enough to give a direct insight into the major determinants of

tip-sample interaction. However, the point dipole model does not provide a goodquantita-

tiveprediction of the measured signal. In particular, it fails to correctly reproduce both the

spectral position and the magnitude of near-field resonances, as shown in Sect. 2.5.

Apart from the analytical dipole model, the tip-sample interaction has also been the ob-

ject of several numerical studies. Different computational techniques have been employed,
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including finite element [152] and boundary element [75] methods, multiple multipole

method [76], multipole expansion [153] and a time-domain approach [154]. Numerical

modeling of the tip sample interaction, especially at the infrared wavelengths, is a highly

complex task. The complexity stems from the widely different length scales which need

to be covered simultaneously. On one side there are the tip length and the illumination

wavelength, both possibly larger than 10µm. On the other side, the system must be mod-

eled with precision better than the tip radius, usually in the nanometer range. The resulting

dynamic range of four orders of magnitude usually requires some compromises to be made

before a numerical solution can be obtained. A common simplification is the reduction

of the problem dimensionality from three to two dimensions by imposing the axial sym-

metry of the system. Additionally, the probes are usually artificially truncated instead of

considering their full length and an idealized tip shape is assumed. Finally, the probing

tip vibration is rarely taken into account due to the large computational effort involved,

although it represents an essential aspect of the s-SNOM signal detection [155].

For one or more of the above reasons, no model has so far accurately reproduced the

experimentally obtained spectra [63, 66] of near-field resonant samples. Such outcome also

precludes an unambiguous material identification based on near-field vibrational spectra.

With constant improvement in the computer power and modeling techniques, it is likely

that some numerical method will eventually succeed at this task. However, unless it turns

out to be much faster than methods currently in use, it will most likely be too slow to

be used in the inverse way and determine the optical constants of a material based on the

measured near-field optical signal at each pixel in an image.An improved analytical model

would therefore be the most important step towards the promised local optical constants

on the nanometer scale [58]. An attempt at achieving this goal is presented in this chapter.5.1.2 Overview
To derive an improved model of the tip-sample near-field interaction, the reason for the

failure of the dipole model will be identified and subsequently corrected. As described in

Sect. 2.4 and depicted in Fig. 2.5, the dipole model reduces the probing tip to a point dipole

located near its end. We have already seen in Fig. 4.1 that thefield around a spheroid looks

much more like a field of an extended (i.e. finite), and not a point-like dipole. At a large

distance from the spheroid, the point-like and extended dipoles are hardly distinguishable.

Nevertheless, significant differences exist in the immediate vicinity of the spheroid. This
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claim is quantitatively supported by Eq. 4.1 which yields the following expression for the

electric fieldEs(D) = E(D)−E0 generated by the spheroid along its axis (ρ = 0) as a

function of the distanceD from the spheroid boundary:

Es(D) =
2F (L+D)

D2+L (2D+R) + ln L−F+D
L+F+D

2F (L−ε R)
LR(ε−1) − ln L−F

L+F

E0. (5.1)

The exact solution from Eq. 5.1 will now be compared to the field of a point dipole and an

extended dipole. The field of point dipole along the spheroidaxis is given byEpd(D) =

Apd/(R+D)3. The dipole is thereby positioned in the center of curvatureof the spheroid

apex, as prescribed by the dipole model (Sect. 2.4). In contrast, the field of an extended

dipole consists of two monopole contributions:Eed(D) = Am((R+ D)−2 + (2L−R+

D)−2). For short distancesD from the spheroid (D ≪ L) the point charge far from the

observation point can be neglected. Based on Fig. 4.1, we expect the remaining single

monopole fieldEm = Am/(R+D)2 to match the exact resultEs better than the dipole field

Epd. For a meaningful comparison, the constantsApd andAm are chosen so that fields of

different models assume the same value at the tip apex, i.e. so thatEpd(0)= Em(0)= Es(0).

The results for the spheroid from Fig. 4.1 withR/L = 0.1 are displayed in Fig. 5.1.
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Figure 5.1: (a) Electric fieldEs generated by a spheroid in homogeneous external field as
a function of the distanceD from the spheroid end. Shown are the exact result
from Eq. 5.1 (dashed line), monopole fieldEm = Am(R+D)−2 (upper full line)
and dipole fieldEpd = Apd(R+D)−3 (lower full line), scaled to the valueEs at
the spheroid surface,D = 0. (b) Relative deviation of the monopole fieldEm

(upper line) and dipole fieldEpd (lower line) from the true spheroid fieldEs.

Evidently, the monopole field is in a much better agreement with the exact result. The

conformity is particularly good close to the spheroid surface, giving less than 10% error

at D = R where the spheroid field has already decayed to about 20% of the value at the
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surface. On the other hand, the point dipole field deviates from the exact result by 50%

at D = R and more than 80% at a distance ofD = 4R. Such large error is certainly one

of the main reasons for the quantitative discrepancy between the dipole model and the

experimentally observed near-field spectra shown in Sect. 2.5.

At the same time, Fig. 5.1 also suggests that the probing tip might be replaced by a point

charge (monopole)Q0 for the purpose of modeling the near-field interaction. The opposite

charge -Q0 constituting the extended dipolep0 resides on the other end of the tip (i.e. the

model spheroid), so it can be neglected when calculating theinteraction with the sample.

The chargesQ0 and -Q0 and the resulting dipole momentp0 ≈ 2Q0L are directly induced

by the external illumination fieldE0, which by definition makes them independent of the

near-field interaction with the investigated sample. Material contrasts useful for near-field

optical microscopy stem from an additional polarization induced due to the interaction

of the probe with the sample. An attempt will be made here to describe this additional

polarization of the probe by another extended dipolepi consisting of monopolesQi and

-Qi , as illustrated in Fig. 5.2(b). Of those two charges, onlyQi is assumed to participate

in the near-field interaction, while the existence of -Qi is required by the electric neutrality

of the probing tip. The exact strength and location of the interaction-induced charges±Qi

shown in Fig. 5.2(b) will be determined in Sects. 5.1.4 and 5.1.5, respectively. Although

the charge -Qi is considered negligible in the near-field interaction, it is nevertheless needed

to calculate the dipole momentpi which contributes to the radiated EM field.

In summary, the part of the probe participating in near-fieldinteraction is represented by

two point charges,Q0 andQi. For this reason the entire model is perhaps best described as

the ”monopole model”. Such name also stands in a clear contrast to the dipole model which

it is supposed to replace. For easier comparison of the two models, they are illustrated side-

by-side in Fig. 5.2.

In the following, a more careful justification of the assumptions behind the monopole

model is presented, together with the derivation of the expression for the interaction-

induced chargeQi and the corresponding dipole momentpi .5.1.3 Spheroid in Homogeneous External Field
A nice fit of the monopole fieldEm to the exact spheroid fieldEs shown in Fig. 5.1 is

not obtained for every spheroid’s shape. As a matter of fact,the shape factorr = 0.1
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(a) (b)

Figure 5.2: Comparison of the point dipole and the monopole model. (a) In the point dipole
model, the tip is first reduced to a small sphere in a uniform electric fieldE0 to
determine its polarizability. The sphere is then further reduced to a point dipole
located in its center for calculating the interaction with the sample. (b) In the
monopole model, the tip is approximated by a spheroid in a uniform electric
field E0 to obtain the field enhancement close to the tip apex. The spheroid is
then reduced to a finite dipolep0 which produces the same field enhancement
at the tip apex. The dipolep0 consists of the monopolesQ0 and -Q0, of which
only Q0 (positioned closer to the sample surface) participates in the near-field
interaction. As the consequence of the interaction, an additional point charge
Qi is induced close to the spheroid focus, whereas the oppositecharge -Qi is
distributed along the spheroid.

chosen in Fig. 5.1 turns out to be very close to the optimum value. Forr = 0.01, the error

|Es−Em|/Es at D = R reaches almost 25% and further increases with the distanceD. If

a better fit is required over a broader range of shape factorsr, the slope of the monopole

field outside the spheroid can be adjusted by slightly shifting the charge location. Taking

W0 to be the required monopole distance from the spheroid boundary, this is accomplished

by the following function:

Em(D) =
W2

0 Es(0)
(W0+D)2 , (5.2)
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where the factorW2
0 Es(0) in the numerator ensures the correct field enhancement at the

spheroid surface. The positionW0 can be calculated by imposing the conditionEm(D1) =

Es(D1) for a particular distanceD1. The choiceD1 = R seems to be a reasonable trade-

off between the field enhancement overestimate at shorter distances and the corresponding

underestimate at larger distances.

The exact solution for the charge positionW0 is rather complicated, but a simple approxi-

mate result can be derived with an accuracy better than 5% forall r < 0.3:

W0 ≈ 1.31RL
L+2R

. (5.3)

The average error of about 3% made by Eq. 5.3 is completely negligible, especially because

there is no need for theEm(D) to intersect the true functionEs(D) exactly atD1 = R. To

demonstrate the effect of the charge shift, the errors with and without the shift are compared

in Fig. 5.3. Two values ofr were selected, bounding roughly the range of practicable shape

factors conforming with the assumptionR≪ L ≪ λ for λ in the mid-IR range. Owing to

the shift, the error∆E = |Es−Em| has been constrained to below 4% of the maximum field

strengthEs(D = 0) in all cases.
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Figure 5.3: Approximation of the spheroid fieldEs by a monopole fieldEm, with (full line)
and without (dashed line) a corrective charge shift. The deviation of the ap-
proximate resultEm(D) from the exact resultEs(D) is plotted, normalized to
Es(0). Two spheroid shape factorsr = R/L are shown: (a)r = 0.2 and (b)
r = 0.01.

As seen in Fig. 5.3, even without shifting the chargeQ0, the error|Es(D)−Em(D)|/Es(0)

remains well within 10% ofEs(0). This error turns out to be relatively small compared to

the approximations which will be made in subsequent sections. The shift of theQ0 position

may thus be regarded as an optional correction.
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In conclusion, the field of a point charge successfully reproduces the field of a spheroid

over short distancesD≪ L and for spheroids with shape factors 0.01≤ r ≤ 0.2, relevant for

modeling the s-SNOM experiments. In the absence of the sample, this permits the entire tip

under an external illumination withλ ≫ L to be reduced to a single point chargeQ0. This

approximation works well as long as the distanceD to the sample remains within several

tip radii R, which is sufficient to cover the typical tip-sample distances in the apertureless

near-field optical microscopy.

Finally, the value ofQ0 can be obtained by comparing Eq. 5.2 to the general expression for

a monopole field in cgs units,Em = Q/R2, from whichQ0 = W2
0 Es(0) follows. With the

relation

Es(0) = E(0)−E0 = (γ0−1)E0, (5.4)

Q0 can also be expressed as

Q0 = W2
0 (γ0−1)E0, (5.5)

whereγ0 = E(0)/E0 is the field enhancement at the point(z,ρ) = (L,0), i.e. on the inter-

section of the spheroid axis with the spheroid surface. The value ofγ0 can be derived by

settingD = 0 in Eq. 5.1:

γ0 =
2F
R + ln L−F

L+F

2F (L−ε R)
LR(ε−1) − ln L−F

L+F

+1. (5.6)

ForR≪ L, Eqs. 5.6 and 5.3 simplify to

γ0 =
2L
R + ln R

4L

2F (L−ε R)
LR(ε−1) − ln L−F

L+F

+1, and (5.7)

W0 = 1.31R, (5.8)

respectively. Further simplifications of the denominator in Eq. 5.7 are not possible without

producing large errors inQ0 for some possible values ofε.5.1.4 Spheroid in External Monopole Field
The next topic to be considered is the influence of the tip on the sample. As with the dipole

model (Sect. 2.4), the method of images can be employed. If the tip is represented by a

point chargeQ0 at a distanceH abovethe surface, the sample response is equivalent to

a point chargeQ′
0 = −βQ0 at the same distanceH below the surface (Fig. 5.2(b)). The
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”reflection factor”β is known from electrostatics to be related to the dielectricconstant of

the sample asβ = (εs−1)/(εs+ 1). A proof that the electrostatic concept of the mirror

image can be successfully applied over very short distanceseven with fields oscillating at

optical frequencies is presented in Sect. 5.2 .

The response of the probing tip to the mirror chargeQ′
0 = −βQ0 induced in the sample

should be determined next. It is thereby particularly important to find out whether this

response looks like the induction of another point chargeQi close to the tip apex. This

would justify one of the basic assumptions of the monopole model, sketched in Fig. 5.2.

Before attacking the more complex problem of a spheroid in the monopole field, a simpler

case of a grounded conducting sphere will be presented for introduction. To this end, let

us recall that the entire surface of any grounded perfectly conducting object always resides

on the zero potential. The same obviously applies to our sphere in the presence of an

external point chargeQe. From standard textbooks it is known that the charge distribution

on the surface of the sphere in this case produces an electricfield equivalent to that of a

certain point chargeQi within the sphere [156]. The exact relation between the two charges

is Qi = Qezi/R, with R being the sphere radius andzi = R2/ze the distance of the fictive

”internal” point chargeQi from the center of the sphere. The external chargeQe is located

at a distanceze form the sphere center (Fig. 5.4(a)).

If the sphere is deformed along one axis to become a prolate spheroid, its response to the

external chargeQe is no more equivalent to apoint charge. It has been shown that its

response is instead equivalent to a certainline charge distribution along the line connecting

the two spheroid foci[157]. This situation is illustrated in Fig. 5.4(b).

The hypothesis that the spheroid in the field of a point chargecan be replaced by another

point charge will now be examined utilizing results from [158] and [159]. These two refer-

ences provide semi-analytical solutions to the problem of agrounded perfectly conducting

spheroid in the presence of a point charge. To make use of these results, from this point

on the derivation of the monopole model has to be restricted to perfectly conducting probe

materials, too. On the other hand, the transition from grounded to isolated spheroids will

be made before the final result is derived.

The distribution of line chargeqi(z) required to maintain the surface of a grounded spheroid

at zero potential in the presence on an external point chargeQe is given by the following



59 5.1 Monopole Model

(a) (b) (c)

Figure 5.4: (a) Electric potential outside a grounded perfectly conductingspherein the
presence of an external chargeQe is equivalent to the potential obtained by
replacing the sphere by a point chargeQi . (b) Electric potential outside a
grounded perfectly conductingspheroidin the presence of an external charge
Qe is equivalent to the potential of a certain non-uniform linecharge distri-
bution qi (cf. Fig. 5.5). (c) For short distances between the spheroidand the
external charge, convergence problems are encountered in Eq. 5.9 while cal-
culating the line chargeqi . The problems can be avoided by separating the
equivalent charge into the point charge contributionQc and a reduced amount
of line chargeqc.

series[158]:

qi(z) =−QeΘ(F2−z2)
2F

∞

∑
n=0

(2n+1)
Ln((L+D)/F)Pn(L/F)

Ln(L/F)
Pn(z/F). (5.9)

The notation from Table 4.1 has been employed here with the addition of two new symbols:

the unit step functionΘ and the Legendre polynomialsPn. As indicated in Fig. 5.4, the

origin of thez-coordinate in Eq. 5.9 is set to the spheroid center.

Three examples are given in Fig. 5.5 showing the (fictive) line charge distribution along the

spheroid axis calculated using Eq. 5.9.

The convergence speed of the series in Eq. 5.9 can be estimated from Fig. 5.5 by observing

the difference between the calculation withn = 6 and withn = 12 terms in the sum from

Eq. 5.9. For large distancesD, Fig. 5.5(a) reveals a rapid convergence, which becomes

slower as the distanceD is reduced in Fig. 5.5(b) and (c). For thin spheroids (R≪ L),

Eq. 5.9 exhibits serious convergence problems with external charge distances below about
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Figure 5.5: Line charge distributionqi induced along the axis of anr = 0.1 spheroid as
calculated from the first 6 terms (dashed line) and 12 terms (full line) in Eq. 5.9.
The external point charge is located at: (a)D = 4r, (b) D = 2r, and (c)D = r.

D = 3R/2. For such distances, an alternative approach has been suggested in [158]. It

involves the separation of the induced chargeqi into a point chargeQc and a reduced line

charge distributionqc. This model is illustrated in Fig. 5.4(c). The point charge component

Qc in the alternative approach is located at

zc =
(L+D)(1+ r)−2

√
r ((1+D/L)2− f 2)

(1− r)
, (5.10)

measured from the spheroid center. It is easy to show thatzc lies between the focusz= F

and the spheroid boundaryz= L. This can also be seen in Fig. 5.6, where the positionzc is

plotted together with the amount of charge at this position.The amount of remaining linear

charge is also shown in Fig. 5.6(b) and demonstrates how the induced charge gradually

changes it character from a point-like to line charge distribution. Its mean position also

simultaneously shifts away from the spheroid end towards the spheroid center.
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Figure 5.6: (a) Positionzc of the induced point charge component according to Eq. 5.10.
(b) Partition of the total induced chargeQt (thin full line) into the point charge
componentQc (thick full line) and line charge componentqc (dashed line). All
quantities are calculated for a spheroid withr = 0.1.
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In conclusion, the charge induced in the spheroid only roughly resembles a point charge.

Moreover, it changes both its position and its distributiondepending on distance of the

external charge. However, for short separationsD between the spheroid and the external

chargeQe, the induced charge does indeed remain concentrated withinroughly one cur-

vature radiusR from the spheroid end. Consulting the figures 5.5 and 5.6 again, we see

that, on average, the highest charge concentration seems tobe around the spheroid focus

(z= F). Since for simplicity only one fixed position of the inducedchargeQi is allowed

in the monopole model (Fig. 5.2),z= F seems to be the best choice for this position. For

R≪ L, the position of the focus is given byz= F ≈ L−R/2, measured from the spheroid

center, orWi ≈R/2 from the spheroid end.

It should be emphasized once more that the reduction of charge induced in the spheroid by

an external point chargeQe to another point chargeQi at fixed location inside the spheroid

is a crude approximation. Its use is motivated exclusively by the huge simplification of the

final solution it enables.5.1.5 Amount of Indued Charge
To complete the approximation of the spheroid response to anexternal point chargeQe by

another monopoleQi , the value ofQi remains to be determined. This can be done by noting

that Legendre polynomialsPn(z/F) encountered in Eq. 5.9 are oscillatory and integrate to

zero on the interval[−1,1] for all n exceptn= 0. This means that only the first term (n= 0)

in the sum in Eq. 5.9 determines the total charge on the spheroid[159] and all subsequent

terms just redistribute it along the spheroid axis. SinceP0(x) = 1, the net chargeQt induced

on a grounded perfectly conducting spheroid in the field of anexternal point chargeQe is

determined by Legendre functionsL0 in Eq. 5.9:

Qt =−Qe
L0((L+D)/F )

L0(L/F )
=−Qe

ln L+F+D
L−F+D

ln L+F
L−F

. (5.11)

As seen in Fig. 5.5, not all of the chargeQt is concentrated close to the spheroid end. Since

only the charge found in the proximity of the sample is considered relevant for the near-

field interaction in the monopole model, the induced monopole Qi can be assigned only a

fraction of the total induced chargeQt . An estimate of its value should be made bearing

in mind that for describing the probe-sample interaction, the mirror imageQ′
i = −βQi

of the monopoleQi assumes the role of the external chargeQe. If the probing tip is in
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contact with the sample surface, only the charge density in the immediate neighborhood of

the contact area is important for the interaction. Moving the tip away from the surface, a

larger portion of its mirror image has to be considered for anaccurate description of the

electric field at the position ofQi . Following this rationale, Fig. 5.7 shows the fraction of

Qt located within the distance∆z = R+ D from the spheroid end, calculated according

to the model in [158]. Curves in Fig. 5.7 exhibit a similar behavior for various spheroid

shapes. Moreover, they can be considered constant to a first approximation for distancesD

larger thanDmin = Wi = R/2, the smallest distance permitted by the model. A reasonable

estimate for this constant based on Fig. 5.7 seems to be around g = 0.7±0.1. This value

will be used as the starting point for further refinement.
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Figure 5.7: Fraction of the total induced chargeQt found within the rangeR+D from the
tip end. Three different shape factor are shown:r = 0.2 (full line), r = 0.1
(dashed) andr = 0.05 (dotted). The shaded part of the plot fromD = 0 to D =
0.5R denotes external charge distances which do not appear in themonopole
model.

One important refinement is the transition from a grounded spheroid considered so far to an

isolated spheroid of the monopole model shown in Fig. 5.2. When the chargeQt is induced

in a grounded spheroid, the surplus charge -Qt is assumed to flow out of the spheroid. Since

the surplus charge cannot leave anisolatedspheroid, it must distribute in such a way that

the entire surface of the spheroid still remains at the same potential. This requirement is

satisfied by an ellipsoid if every slice of thickness∆z contains an equal amount of charge

∆Q = −Qt∆z/2L [160]. This means the charge -Qt is uniformly spread over the length of

an isolated spheroid, and some of it resides within the range∆z= R+D considered relevant

for the near-field interaction in Fig. 5.7(b). To account forthis charge, the factorg derived

above has to be decreased tog′ = g− (R+D)/2L. With this correction, the strength of the
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induced monopoleQi is equal to

Qi = g′Qt =−(g− R+D
2L

)Qe
ln L+F+D

L−F+D

ln L+F
L−F

. (5.12)

Since the approximationR≪ L has been introduced already in Sect. 5.1.3, we can expand

F =
√

L−R asF = L−R/2. This way Eq. 5.12 becomes

Qi ≈−(g− R+D
2L

)Qe

ln 2L−R/2+D
R/2+D

ln 2L+R/2
R/2

. (5.13)

NeglectingR/2 andD in comparison to 2L, Eq. 5.14 is finally obtained:

Qi ≈−(g− R+D
2L

)Qe
ln 4L

R+2D

ln 4L
R

. (5.14)5.1.6 Near-�eld Interation
Eq. 5.14 represents the final form of the expression forQi . To evaluate it, the external

chargeQe in Eq. 5.14 and its distanceD have to be specified now. In this regard, it should

be noted that there actually existtwo parts of the induced chargeQi shown in Fig. 5.2

and again in Fig. 5.8 with more details. For the first part,Qi,0, the external chargeQe is

the mirror imageQ′
0 of the chargeQ0 induced by the illumination field. For the second

part, Qi,1, the external chargeQe is the mirror imageQ′
i of the monopoleQi itself. The

corresponding distancesD0 andD1 are easy to derive from Fig. 5.8:

D0 = 2H +W0, and

D1 = 2H +Wi , (5.15)

whereH denotes the distance between the probing tip and the sample surface and the

positionW0 of the monopoleQ0 is given by Eq. 5.3.

Inserting Eqs. 5.15 into Eq. 5.14, the following relations between the image chargesQ′
0 and

Q′
i and the monopolesQi,0 andQi,1 they induce in the probe are obtained:

Qi,0 =− f0Q′
0 = −(g− 2H +W0 +R

2L
)

ln 4L
4H+2W0+R

ln 4L
R

Q′
0, and
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Figure 5.8: Charges participating in the near-field interaction between the probe and the
sample, together with their positions according to the monopole model.

Qi,1 =− f1Qi,1 = −(g− 2H +Wi +R
2L

)
ln 4L

4H+2R

ln 4L
R

Q′
i . (5.16)

The induced chargesQi,0 andQi,1 should finally be added together to obtain the monopole

Qi ,

Qi = Qi,0+Qi,1, (5.17)

which measures the strength of the near-field interaction between the probe and the sample.

Since the image chargesQ′
0 andQ′

i can be expressed as

Q′
0 = −β Q0, and

Q′
i = −β Qi , (5.18)

and the monopoleQi comprisesQi,1 which is proportional to the mirror image ofQi it-

self, we have obtained a recursive definition forQi . Such a situation has been already

encountered with the dipole model in Sect. 2.4, so the same approach of searching for a

self-consistent solution can be utilized here. That way thevalue ofQi is obtained by solv-

ing the equation

Qi = β ( f0Q0 + f1Qi). (5.19)
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The solution of Eq. 5.19 is the near-field-interaction-induced chargeQi referred to in Fig. 5.2.

Qi =
β f0

1−β f1
Q0. (5.20)

Beside the chargeQi , the electric neutrality requires the existence of the opposite charge -Qi

somewhere on the spheroid. The dipole momentpi of the charge distribution generated by

Qi and -Qi oscillates with the driving field frequency and thus radiates light. To determine

the dipole momentpi , we recall the fact that the only distribution of charge -Qi which does

not break the equipotential property of the spheroid surface is the uniform distribution over

the spheroid length. The symmetry of this distribution allows us to effectively replace it a

single charge -Qi located in the spheroid middle since the dipole moment is linear in the

charge position. The average distance betweenQi and -Qi is thenL−R/2≈ L, and the

resulting dipole momentpi equals

pi = Qi L =
β f0

1−β f1
Q0L. (5.21)

The dipole momentpi emits radiation which can be taken as the measure of the near-

field interaction between the probe and the sample. In addition to pi , there is also the

dipole momentp0 = 2Q0L which depends on the size and shape of the probe and on the

illumination field strength, but is completely independentof the sample and its properties.

This allows a dimensionless ”near-field contrast factor”η = pi/p0 to be defined as an

illumination-independent measure of the s-SNOM signal, comparable between different

samples and different measurements:

η =
pi

p0
=

1
2

β f0
1−β f1

(5.22)

Inserting f0 and f1 from Eqs. 5.16 into Eq. 5.22 and settingWi = R/2, we obtain

η =
β (2Lg−2H−W0−R) ln 4L

4H+2W0+R

4L ln 4L
R −β (4Lg−4H−3R) ln 4L

4H+2R

(5.23)

Eq. 5.23 can be written in a simpler form by noting that all lengths scale with the spheroid

half-lengthL. Substitutingh, r, andw respectively forH/L, R/L, andW0/L, Eq. 5.23

becomes

η =
β (2g−2h−w− r) ln(h+w/2+ r/4)

4 ln( r/4)−β (4g−4h−3r) ln(h+ r/2)
. (5.24)
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The parameterw in Eq. 5.24 is the position of the initial monopoleQ0. It can be taken

to be equal tow = r for simplicity. Alternatively, a slightly more accurate value can be

determined with the aid of Eq. 5.8, yielding

w =
W0

L
=

1.31r
1+2r

. (5.25)5.1.7 E�etive Polarizability
The overall dipole momentpeff of the charge distribution in the probe can be constructed

by adding the contributions from the dipolep0 induced by the external field and the dipole

pi induced by the near-field interaction:

peff = p0+ pi = 2Q0L(1+η). (5.26)

The value ofQ0 required for calculatingpeff is provided by Eq. 5.5:Q0 = W2
0 (γ0−1)E0.

In the limit of a perfectly conducting spheroid (εprobe→−∞), the field enhancement factor

γ0 from Eq. 5.7 simplifies to

γ0 =
2L/R+ ln R

4eL

ln 4L
e2R

+1, (5.27)

or, equivalently:

γ0−1 =
2+ r ln r

4e

r ln 4
e2r

, (5.28)

Finally, insertingQ0 from Eq. 5.5 into Eq. 5.26, the effective polarizabilityαeff of the

spheroid interacting with the sample is easily obtained:

αeff =
peff

E0
= 2(γ0−1)w2L3(1+η) (5.29)

Together with Eqs. 5.28, 5.25 and 5.24 which determine the quantitiesγ0, w andη, Eq. 5.29

represents the complete expression for calculating the relative strength of the s-SNOM sig-

nal based on the monopole model. It can be directly compared to the effective polarizability

obtained from the point dipole model, Eq. 2.10. Since the probe in the monopole model is

assigned the polarizability of a prolate spheroid of length2L, it obviously provides a much

better approximation to the real probes than the dipole model in which the probe assumes

the polarizability of a small sphere of radiusR, R≪ L.
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Still, the model spheroid length is constrained to 2L≪ λ due to the electrostatic treatment

of the problem. On the other hand, standard s-SNOM (AFM) probing tips usually have

lengths of about 10µm or more, which is comparable to or greater thanλ for mid-IR

and shorter illumination wavelengths. For this reason, a significant discrepancy between

the polarizability of real probes and a small spheroid to which Eq. 5.29 applies should be

expected. This problem will be addressed in Chapter 6.

Although the entire probing tip can radiate light, the largest part of a real probe is too far

from the sample to give a significant contribution to the near-field interaction. The length

2L considered in the electrostatic model should therefore provide a satisfactory description

of the near-field interaction. This permits the contrast factor η in the form of Eq. 5.24 to

be used for prediction of true near-field optical contrasts in s-SNOM experiments.

Technically, the near-field part of the polarizabilityαeff related to the dipole momentpi and

the contrast factorη is extracted from the overall emitted signal by the higher-harmonic

demodulation method described in Sect. 2.3. This method suppresses the detection of light

scattered due to the interaction-independent dipole moment p0, also known as the s-SNOM

background signal. A detailed analysis of this issue is presented in Chapter 6.5.1.8 Parameters of Monopole Model
Eq. 5.23 contains all parameters which determine the near-field optical contrast between

two materials within the monopole model framework. Each parameter was described at

the point where it was introduced, but an overview of their meaning and permissible values

is presented here for convenience.

The first quantity found in Eq. 5.23 is the electrostatic ”reflection coefficient”β , defined

asβ = (εs−1)/(εs+ 1), whereεs is the complex dielectric constant of the sample. The

quantityH stands for the probe-sample separation, i.e. the height of the probing tip above

the sample.R is the radius of the spheroid apex curvature which can be obtained from

an electron micrograph of the probing tip or from the topographic resolution it provides.

For commercial probes, the radiusR can also be found in data sheets provided by the

manufacturers. According to the assumptions of the model, bothH andRhave to be much

smaller thanL, the length of the major semi-axis of the spheroid representing the probe.

The total length of the spheroid (2L) is equal to the probe length if the latter is much shorter

than the wavelengthλ . This condition is usually not satisfied in practice and the lengthL
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has to be determined by other means. Thereby the constraint 2L ≪ λ has to be observed,

since otherwise the field enhancement, and consequently theinteraction strength, would be

overestimated. In Sect. 5.4,L will be determined as a free parameter determined such that it

provides the best fit to the available experimental results.Unlike an ordinary fit parameter,

it is not readjusted to each experimental data set separately. Rather, its value is determined

only once and used unchanged in all subsequent calculations.

Finally, the least precisely defined parameter is the factorg, related to the proportion of the

total induced chargeQt that is relevant for the near-field interaction. In a simple approach

used here, it was replaced by a constant estimated to about 0.7±0.1 based on Fig. 5.7(b). In

practice, some corrections can also be incorporated into the factorg on a phenomenological

basis, such as the effect of using a probe with finite conductivity instead of a perfectly

conducting spheroid. Further corrections may also includethe radiation resistance which

has been neglected so far. Given that the near-field couplingis essentially capacitive in its

nature, the electric resistance due to finite conductivity and the radiation resistance cause

a slight phase difference between the driving field and the response of the probe. This

phase difference may be accounted for by using a complex factor g with a small imaginary

component, as will be done in Sect. 5.4.

At this point it is still an open question how sensitive are the results obtained by the

monopole model to the variation of its parameters. Due to thecomplex interplay between

the parameters, the relative impact of each parameter on thefinal result depends to a large

degree on the values of all other parameters and on the dielectric function of the sample.

For this reason no simple answer can be provided here, but this issue remains an important

topic to study in future publications.5.1.9 Possible Improvements
To conclude, a new model for describing the interaction of a s-SNOM probing tip with

the investigated sample has been derived in this section. The final expression, Eq. 5.29,

is somewhat more complicated than the corresponding expression in the dipole model

(Eq. 2.10), but it still represents a completely analyticalclosed form solution. A detailed

derivation of Eq. 5.29 was presented here to give the justification for assumptions of the

model and to indicate directions for possible future improvements. Among them, the pro-

vision for varying the position of the monopoleQi with the probe-sample distance would

probably make the biggest difference. Another possible improvement would be to repre-
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sent the interacting part of the probe by several monopolesQ1..Qn which would provide

a better match to the line charge distribution of Eq. 5.9. This extension would also enable

the proper treatment of the uniformly distributed surplus charge -Qi , which is expected

to give the interaction a slightly dipolar character. From electrodynamic calculations, the

effective probe lengthL could be derived without resorting to a fit to experimental data.

Finally, a significant advancement would be made by extending the model to dielectric

probes based on Refs. [161] and [162], thereby enabling the prediction of signal obtained

using polariton-resonant probes.5.2 Mirror Image Radiation
The expressions 2.10 and 5.29 describing the near-field interaction account for the pres-

ence of the sample only through its influence on the probe polarization. However, the

probe induces an oscillating charge distribution in the sample which obviously emits some

radiation as well. It was thus proposed in the original form of the dipole model (Eq. 2.15)

to treat the mirror dipoleβ p the same way as the tip dipolep. Such an approach was

consistently avoided in this work based on the following argument against the equivalence

of the two dipoles for emitting radiation: while the tip dipole p is assumed to be a real

dipole, its mirror imagep′ = β p is just a fictive construct to describe the field distribution

above the sample surface in theelectrostatic limit. Consequently, the rapidly evanescent

fields are properly accounted for by such a construct, but thepropagating waves are not

since they reflect from the sample with a different reflectioncoefficient which also varies

with the angle of incidence. Therefore, the electrostatic mirror imagep′ cannot be used to

calculate the intensity of waves radiated from the sample surface.

The same conclusion can be reached on the energy conservation basis. Namely,|β | > 1

for all materials with negative dielectric constantε (or more precisely, the real part of it,

ε ′ = re(ε)). This implies that upon reflection of the wave from the sample surface, more

energy would be re-emitted than received in the first place, constituting a violation of the

energy conservation principle. On the other hand, the reflection coefficient|β | > 1 does

not contradict the energy conservation when applied to the evanescent waves because they

do not transport energy away from the source.

The correct way to treat the radiation reflected by the samplewill now be deduced building

on the Fourier optics approach from Sect. 4. Just like any other field, the field of a (point-
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like or extended) dipole can be expanded into plane waves. The electrostatic ”reflection

coefficient”β = (εs−1)/(εs+1), Eq. 3.1, is expected to apply only to waves not signifi-

cantly affected by the retardation. These can only be the highly confined, i.e. evanescent

components, not detectable in the far field. From this reasoning it follows that the reflec-

tion coefficient of propagating waves must differ from that of evanescent waves, and it may

also never exceed unity.5.2.1 Propagating vs. Evanesent Waves
The difference in the reflection coefficient of waves propagating from the probe towards

the detector and those mediating the near-field interactionwill be now determined quanti-

tatively. For this purpose, let us first consider a plane wavewith the free-space wave vector

k0. Let the wave intersect the sample surface, and letkρ be the projection ofk0 onto the

surface. The component of the wave vectork0 perpendicular to the surface is then given by

kz =
√

k2
0−k2

ρ . It is important to note that the same relation holds even ifkρ > k0[163]. In

that casekz is imaginary, and the wave is evanescent. Provided the sample is non-magnetic

(µ = 1), the wave has a wave vectork′0 =
√

εsk0 in the half-space below the sample surface.

For the transverse magnetic (TM, or ”p”) polarization of thewave the reflection from the

surface is determined by the following relation, valid bothfor real and complexkz[163]:

rp =
εskz−k′z
εskz+k′z

. (5.30)

In analogy tokz, the z-component ofk′0 is equal tok′z =
√

k
′2
0 −k2

ρ =
√

εsk2
0−k2

ρ . The

continuity of the EM field component parallel to the surface assures thatkρ is equal above

and below the surface.

For the transverse electric (TE, or ”s”) polarization, a different reflection coefficient is ob-

tained [163]. However, this result will not be needed for thepresent analysis because a

dipole oscillating perpendicular to the surface emits onlyTM-polarized waves. The domi-

nant polarization of an elongated optical antenna perpendicular to the surface is also TM.

By expandingkz andk′z in Eq. 5.30 and substitutingkρ = κ k0, we finally obtain

rp(κ) =
εs
√

1−κ2−
√

εs−κ2

εs
√

1−κ2+
√

εs−κ2
. (5.31)
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There are two limiting cases in Eq. 5.31 worth attention. Forκ = 0 we obtainrp(0) =

(
√

εs−1)/(
√

εs+ 1), the well known Fresnel reflection coefficient for normally incident

waves. Even fork 6= 0 we can be certain that|rp| ≤ 1 as long as|κ| ≤ 1 since
√

εs = n

is nothing but the index of refraction whose real part is never negative (unlessµ < 0, but

materials withµ 6= 1 were explicitly excluded here). On the other side, lettingκ → ∞ we

getrp→ (εs−1)/(εs+1) = β , the electrostatic reflection coefficient. It was already noted

that|β | ≥ 1 for ε ′ < 0.

To summarize, we have seen that the reflection coefficientrp assumes different values

for waves with different spatial frequenciesκ . Only waves characterized byκ ≤ 1, i.e.

kρ ≤ k0 propagate and can be detected in the far field. To those waves,the electrostatic

reflection coefficientβ does not apply becauserp approachesβ only in the limit κ → ∞.

As a consequence,β can be employed for calculating the influence of the sample onthe

near-field interaction, but not for radiation of waves into free space.5.2.2 Re�etion of Evanesent Waves
Although rp only tends toβ for kρ → ∞, in both the dipole and the monopole model it

is assumed that all waves reflect with the same coefficientβ , regardless of their spatial

frequency. Since all waves have finite spatial frequency, this is obviously just an approxi-

mation. Fig. 5.9 can be used as a starting point to estimate the error made in Eqs. 2.5 and

5.18 by applying the same reflection factorβ to all plane waves (evanescent or not). It

shows the magnitude of the Fresnel coefficientrp over a large range of spatial frequencies

covering both propagating and evanescent waves. The limitsrp(κ → 0) = (n−1)/(n+1)

andrp(κ → ∞) = (εs−1)/(εs+1) = β are clearly observable in Fig. 5.9.

Of particular interest here is the range of evanescent wave vectorsk> k0 for whichrp(κ)≈
β . From Fig. 5.9 we can conclude this approximation is in fact excellent forκ > 3. This

value should be compared to the actual spectrum of plane waves constituting the field

close to the probe. If it is found that the major part of the spectral density is contained in

the components withκ > 3, the approximation that all waves reflect with the factorβ is

justified.

Waves with largerκ decay exponentially faster, so the distance between the probe and

the plane of observation must be carefully chosen to obtain meaningful results. In typical

experimental conditions, the probing tip vibrates above the sample with an amplitude ap-

proximately equal to the tip radiusR. This makes the average probe-sample distance equal
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Figure 5.9: Magnitude of the Fresnel reflection coefficientrp as a function of wave vector
κ = kρ/k0 calculated for a Si surface (ε = 12+0.1i, full line) and a SiC surface
at about 11µm (ε =−4+0.3i, dashed line).

to R, and the average distance between the probe and its mirror image is 2R. This is a very

short distance compared to the probe length 2L, and the assumptionR≪ L of the monopole

model is satisfied. In Sect. 5.1.3 it was shown that in this case the field of the spheroid can

be approximated by a field of point charge located on the spheroid axis at the distanceR

from the spheroid boundary. In the planez= 3R measured from the charge position, the

full width ∆ρ of the resulting monopole field distribution is equal to∆ρ = 6R at its half

maximum. Invoking the relation∆kρ ∆ρ ≥ 2π , we get∆kρ ≥ 2π/6Ror ∆κ ≥ λ/6R.

With the probe radiusR= 25nm, and the wavelengthλ = 3µm on the lower end of the

mid-IR range we obtain∆κ = 20. This is significantly larger than the thresholdκ = 3

derived from Fig. 5.9. The error made in Eqs. 5.18 where the image chargesQ′
0 andQ′

were equated to -βQ0 and -βQ is therefore negligible throughout the mid-IR wavelength

range this thesis is focused on.

On the other side,λ = 0.6µm from the visible wavelength range yields a much lower value

of only ∆κ = 4 with the same probe radiusR= 25nm. Obviously, Eqs. 5.18 become rather

crude approximations with the visible light. A more detailed investigation of this issue is

beyond the scope of this thesis, but it would generally have to be taken into account for a

quantitative prediction of the s-SNOM signal at visible or near-IR wavelengths.5.2.3 Re�etion of Propagating Waves
The attention will now be transferred from the evanescent field which mediates the near-

field interaction to the propagating field which enables the near-field interaction to be de-
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tected and measured in the far field. The reflection of waves propagating towards the

detector should be accounted for using the reflection coefficient rp from Eq. 5.31 with an

appropriate choice ofκ (κ ≤ 1) depending on the angle of observation. For a plane wave

with declinationθ from the surface normal (z-axis),κ is given by

κ = kρ/k0 = sinθ . (5.32)

If the sample is illuminated along the same path the scattered light is detected, the reflection

coefficient of the incoming and emitted waves is the same. Owing to two reflections, the

field scattered by the probe is then effectively increased bya factor(1+ crp(κ))2 where

the complex coefficientc accounts for the possible path difference between the direct and

reflected radiation.

The situation may become more complex if an asymmetry between the illumination and

collection paths exists. Two different reflection coefficientsrp might then be required. Ad-

ditionally, if the illumination and collection are performed via an objective with a large

numerical aperture (NA), the plane-wave approximation might become inadequate. In par-

ticular, the contribution of the direct and reflected wave should be weighted differently and

a proper integration over all angles covered by the objective might be required as well.

An important consequence of the factor(1+ crp(κ))2 can be demonstrated by setting

κ = 1 (θ = 90, grazing incidence) in Eq. 5.31. We obtainrp = −1, implying that the

signal level is significantly reduced for illumination and observation under large angles

θ . However, it would not be correct to conclude that opposite extreme (θ ≈ 0, normal

incidence) is preferable. The radiation pattern of a dipoleoriented along the z-axis has a

minimum (zero) along the same axis (θ = 0). Invoking the reciprocity principle, the same

factor should be applied to the absorption and to the emission of radiation, adding a factor

κ2 = sin2θ to the scattered field. The combined effect of(1+crp)2κ2 factor withc = 1

is plotted in Fig. 5.10, clearly showing that angles close tothe surface normal (θ . 10)

should be avoided because of poor detection efficiency.

According to Fig. 5.10, incidence anglesθ between about 30° and 70° should be chosen for

optimal measurement conditions. The (soft) upper limit of about 70° is suggested not only

because of the reduced detection efficiency on some materials, but also because of large

differences in signal strength due to far-field reflection coefficientrp which might obscure

the near-field effects.

It should be noted that due to the way they were derived, the results form Fig. 5.10 apply
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Figure 5.10: Factor(1+ rp(θ))2sinθ2 as a function of the normal angle of incidenceθ =
arcsin(κ), calculated for a silicon surface (full line) and a gold surface (dashed
line).

only to a small dipole-like probe with lengthL ≪ λ perpendicular to the sample surface.

If the probe is inclined from the surface normal, the range ofpreferred incidence anglesθ
extends more towards the normal incidence (θ = 0). Probes with lengths larger than the

wavelength (L > λ ) may exhibit several radiation lobes with maxima occurringcloser to

the surface normal [164], thereby also making smaller incidence anglesθ acceptable.

5.2.4 Sattering oe�ient
The results derived in Sect. 5.2.3 call for an extension to the effective polarizabilityαeff

from Eq. 5.29 in order to include the contribution of the reflection from the sample to

the radiated field. Two corrections are required: the illumination fieldE0 is increased by

a factor 1+ crp, and the mirror dipole momentp′eff = crp peff adds to the field directly

scattered by the probe. These two effects do not directly modify the effective polarizability

αeff, but they do influence the scattered field. For this reason they will be assigned to the

scattering contrastσ = sei ϕ , defined in Sect. 2.4 as

σ = Es/E0, (5.33)

i.e. as the ratio of the scattered to the incident field strength, both measured at some fixed

point in space. According to its definition,σ must be proportional to the total illumination

field E0(1+crp) and to the probe dipole momentpeff to which its mirror imagep′eff should
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be added:

σ = fσ (1+crp)2αeff

= fσ (1+crp)2(γ0−1)w2L3(1+η). (5.34)

The reflection factorrp = rp(κ) is defined by Eq. 5.31, and its argumentκ is equal to

κ = sinθ whereθ is the normal angle of light incidence on the sample. The coefficient c

accounts for the difference between the waves directly incident on (emitted from) the probe

and those reflected from the sample. Assuming plane wave illumination, the coefficientc

should contain only the phase retardation by∆ϕ = Lk0 cosθ , i.e. c= exp(−i ∆ϕ). Finally,

fσ is a proportionality constant dependent on the exact experimental parameters, including

the observation point, illumination and detection angle with respect to the probe axis, and

numerical aperture of the focusing objective. Its exact value is not important since it cancels

when the relative contrastsσA/σB of two materials A and B are calculated.

It is important to note that there are two completely different length scales involved in

Eq. 5.34 over which the optical constants of the specimen should be considered. The first

of them is related to the reflection factorβ contained in the near-field contrastη (Eq. 5.24).

The area of the sample surface relevant forβ is determined by field confinement below the

probing tip. From Chapter 4 and Sect. 5.2.2 it follows that the confinement is always on

the scale of the tip radiusR, although its precise extent depends on the sample distanceH

from the probing tip.

On the other hand, for the reflection factor of propagating waves (rp), the entire area of

the sample in focus should in principle be considered. Even in the best case, the smallest

possible diameter of this area is still on the wavelength (λ ) scale. For this reason, the

diffraction effects due to large structures present on the sample surface can be observed in

s-SNOM images. This issue complicates the interpretation of s-SNOM images and should

be considered in quantitative analyses of experimental results.

As an illustrative example, the scattering signal measurement at the boundary of two large

surfaces with different dielectric constantsεA andεB is presented in Fig. 5.11. Crossing the

boundary A-B by a distance small compared to the probing tip length, the material directly

below the tip changes, but, to a first approximation, the illumination of the probe remains

constant. Consequently,β should be calculated using different values ofεs in the regions

A and B, whereasrp should be calculated with roughly the same value ofεs in points 1
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(a) (b)

(c)

Figure 5.11: Choosing the far-field reflection coefficientrp: (a) Probe close to the material
boundary, illumination from side 1:rp,1 ≈ rp,2 ≈ rp,A, (b) probe close to the
material boundary, illumination from side 2:rp,1 ≈ rp,2 ≈ rp,B, and (c) probe
far from the material boundary:rp,1 = rp,A, rp,2 = rp,B. For simplicity, the
diffraction of light by the probe and the material boundary has been ignored.

and 2 shown in Fig. 5.11 (a). The correct value ofrp thereby depends on the illumination

direction, as illustrated in Fig. 5.11 (a) and (b). On the other hand, at distances large from

the material boundary compared to the probing tip length, both β andrp assume different

values at points 1 and 2 in Fig. 5.11(c) since they should be calculated usingεA in case

1 andεB in case 2. Finally, for the intermediate distances comparable to the tip length,

oscillations in the recorded signal are expected as a consequence of the light diffraction on

the boundary between the two surfaces (cf. e.g. Fig. 6.2 in [165]).5.3 Anisotropy
So far it has been assumed that all materials are isotropic, i.e. that light propagates through

each material with a speed independent of polarization and propagation direction. In

practice, many materials interesting from the fundamentalor technical point of view are



77 5.3 Anisotropy

anisotropic. This includes SiC, the material known to exhibit a near-field resonance in the

mid-IR, and also used as a model material throughout this thesis. The effects of anisotropy

thus require a brief consideration here.

In general, anisotropy makes theoretical predictions of the near-field interaction of a s-

SNOM probe with the material considerably more difficult. Toreduce the complexity, the

analysis will be confined to uniaxial crystals, i.e. crystals with the property that electric

field oscillations along two of the three orthogonal axes arecharacterized by the same

dielectric function, whereas the dielectric function along the third axis (the crystallographic

c-axis) has a different value.

The Fresnel reflection coefficient of p-polarized waves given by Eq. 5.31 does not correctly

describe the reflection from anisotropic crystals. For a uniaxial crystal cut perpendicular to

the c-axis, the reflection coefficient should be modified as follows[166]:

rp,⊥ =

√
ε⊥ε‖(1−κ2)−

√
ε‖−κ2√

ε⊥ε‖(1−κ2)+
√

ε‖−κ2
, (5.35)

whereε⊥ andε‖ are the dielectric constants perpendicular an parallel to the c-axis, respec-

tively, andκ = kρ/k0 is the ratio of the spatial frequencykρ in the sample surface plane to

the wave vectork0 = ω/c of a plane wave. If the crystal is cut parallel to its c-axis and the

c-axis lies in the plane of incidence, the reflection factor is given by

rp,‖ =

√
ε⊥ε‖(1−κ2)−

√
ε⊥−κ2√

ε⊥ε‖(1−κ2)+
√

ε⊥−κ2
. (5.36)

In the quasi-electrostatic limitκ → ∞, bothrp,⊥ andrp,‖ tend to the same value

β‖ =
√ε⊥ε‖−1
√ε⊥ε‖+1

. (5.37)

If a crystal is cut perpendicular to c-axis, the reflection factorβ from Eq. 5.37 applies to all

electric field polarization directions in the sample surface plane. For a crystal cut parallel

to the c-axis, such as the sample whose spectra are shown in Sect. 5.4, the reflection factor

depends on the direction of electric field oscillations relative to the c-axis. In particular, the
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waves with the electric field perpendicular to the c-axis reflect with the factor

β⊥ =
ε⊥−1
ε⊥+1

, (5.38)

and the waves with the horizontal component of the electric field parallel to the c-axis re-

flect with the factorβ‖. Due to the symmetry of the monopole field, all angles in the surface

plane contribute equally to the near-field interaction. Thecoefficient of evanescent waves

reflection from the surface of a crystal cut parallel to the c-axis can be thus approximated

by assuming equal importance of both orientations,

β ′⊥ = (β‖+β⊥)/2. (5.39)

However, this approach seems to provide only an approximatedescription of how the field

of a point charge reflects off an anisotropic crystal according to a more complete treatment

of the same problem in Refs. [167] and [168]. There it was shown that the response of an

anisotropic crystal to the presence of a point charge above its surface can be described by

the usual mirror image of the point charge and a certain surface charge distribution within

the crystal. Furthermore, the additional surface charge effectively reduces to a line charge

in the case of weak anisotropy. On this basis, the point dipole model of the near-field

interaction (Sect. 2.4) was extended to anisotropic samples in [169]. However, the dipole

model has already been shown in Sect. 2.5.1 to be incapable ofa quantitative prediction

of the near-field interaction, so the formalism from [169] cannot be used here. On the

other hand, the monopole model has not been yet extended to anisotropic media in a way

analogous to the approach in [169]. For this reason, the anisotropy will be accounted for

only partially through the near-field reflection factorβ given by either Eq. 5.37 or 5.39,

depending on the cut direction.5.4 Monopole vs. Dipole Model
The obvious question at this point is whether the monopole model in the form of Eq. 5.29

offers an advantage over the dipole model, Eq. 2.10. Only thecomparison to the experi-

mental results can provide the answer. For this comparison to be possible, the vibration of

the s-SNOM probe and the subsequent scattering signal demodulation at a higher harmonic

of the vibration frequency have to be taken into account.
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As explained in Sect. 2.3, the light scattered by a vibratings-SNOM probe contains a lot

of background scattering, not related to the near-field interaction. In the monopole model,

the background scattering is attributed to the directly induced dipolep0, and the near-field

signal to the interaction-induced dipolepi in Eq. 5.26. Please note that a more complete

model of the background scattering and its suppression is derived in Chapter 6, whereas

the present section provides only the basics necessary to understand the experimental tech-

nique employed for the near-field signal detection.

It was already mentioned in Sect. 2.3.4 that by demodulatingthe signal at higher harmonics

of the probe vibration frequencyΩ, the pure near-field signal can be extracted from the

total scattered field. To see how the higher harmonic demodulation technique [56, 57,

170] succeeds in extracting the near-field signal, then-th harmonicσn of the scattering

coefficientσ from Eq. 5.34 will be calculated next. Mathematically,σn is equal to the

n-th Fourier series coefficient ofσ with respect to the probe vibration frequencyΩ, i.e.

calculated over the fundamental periodT = 2π/Ω:

σn =
1
T

∫ T/2

−T/2
σ(t)e−inΩt dt (5.40)

The dependence ofσ on the time variablet comes from the varying heighth = H/L as a

consequence of the s-SNOM probe vibration. Denoting the amplitude of the vibration by

A = aL, we get

h(t) =
A(1+cosΩt)

L
= a(1+cosΩt). (5.41)

Since only the near-field contrast factorη depends on the distance in Eq. 5.34, Eq. 5.40 can

be written as

σn = kσ (1+crp)2(γ0−1)w2L3 1
T

∫ T/2

−T/2
(1+η(t))e−inΩt dt. (5.42)

Forn > 0 the constant background part vanishes and the above expression reduces to

σn>0 = kσ (1+crp)2(γ0−1)w2L3 1
T

∫ T/2

−T/2
η(t)e−inΩt dt. (5.43)

In Chapter 6 it will be shown that due to slight variations in the coefficientc, the harmonic

indexn larger thann = 1 has to be chosen in order for the background term to be really
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negligible. For this reason Eq. 5.43 will be compared to the experiment only forn≥ 2.

The calculations can be further simplified by noting that only relative contrasts are mea-

sured in s-SNOM, expressed through the ratio of scattering coefficientsσn resulting from

the interaction of the probe with different materials. Thisenables all constant factors in

Eq. 5.43 to be neglected since they cancel when the ratioσn,A/σn,B is evaluated for two

materials A and B. This leaves us with the ratioσn,A/σn,B = η ′n,A/η ′n,B , whereη ′n is de-

fined as

η ′n = (1+crp)2 1
T

∫ T/2

−T/2
η(t)e−inΩt dt. (5.44)

Due to the complicated form of the functionη given by Eq. 5.24, the integral in 5.44 cannot

be evaluated analytically. For further analysis we therefore have to rely on numerical inte-

gration. This is not a demanding task because the integrandη(t)e−inΩt is well behaved for

all physically sensible values of parameters consistent with the assumptionsr = R/L ≪ 1

andh = H/L≪ 1 with which the monopole model was derived.

There is nevertheless one possible issue that has to be discussed. The denominator ofη,

4 ln( r/4)−β (4g−4h−3r) ln(h+ r/2) contains a difference between two terms that can

in principle become equal to each other. However, they couldonly cancel exactly if the

reflection coefficientβ would be a purely real number. This is never the case in practice

because all materials exhibit at least some amount of damping which makes their dielectric

function ε, and therewith the factorβ = (ε −1)/(ε + 1), a complex number. It has also

been argued in Sect. 5.1.8 that by including the effects of finite conductivity of the probe

and the radiation resistance into the factorg, it becomes a complex number and guarantees

the finite values of the integrand even for purely realβ .

By inserting the appropriate dielectric functionε for different materials into Eq. 5.44, we

can try to predict the near-field optical contrasts between them. The dielectric function

thereby enters Eq. 5.44 through two different reflection coefficients: β , the reflection coef-

ficient of evanescent waves, andrp, the reflection coefficient of propagating waves. It was

already argued in Sect. 5.2.4 thatε for calculatingβ may be different fromε used inrp.

Dealing with e.g. nano-composite materials whose structure is homogeneous on the scale

of the probe length, but exhibits structural variations on asmaller scale, we have a situation

where the dielectric function enteringβ varies, but the value ofrp remains unchanged.

Finally, if the value ofrp does not change over the area of interest, it is sufficient to calculate
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the near-field contrast factor

ηn =
1
T

∫ T/2

−T/2
η(t)e−inΩt dt (5.45)

to obtain the correct scattering signal ratios sinceσn,A/σn,B = ηn,A/ηn,B in this case.5.4.2 Material Contrast
The near-field contrast factorη as defined by Eq. 5.24 requires two parameters,g andL, to

be specified before it can be evaluated. These two parametersare not directly measurable in

an experiment and the theoretical considerations gave onlysome estimates of their values.

In particular, the real part of the factorg was found in Sect. 5.1.5 to be re(g)≈ 0.7 and for

the imaginary part of the constantg the constraint im(g) ≪ 1 has been established. It is

also known that the effective probe length 2L must be much smaller than the wavelength,

i.e. 2L ≪ λ . In the absence of other means to obtaing andL, they were determined by

searching for values which are in a good agreement with the available experimental data

presented in the remainder of this chapter, including the material contrast, approach curves

and near-field spectra of phonon-polariton resonant samples. The best values found are

g = 0.7e0.06i andL = 300 nm. It is thereby important to note that the same values ofthese

parameters will be subsequently used for all comparisons tothe measured data and not

adjusted to each experiment separately.

As the first simple example, the near-field contrast between gold and silicon will be cal-

culated from Eq. 5.45. The required dielectric constants inthe mid-infrared frequency

range aroundλ = 10µm areεAu≈ (−5+ i)103 [171] andεSi≈ 12+0.1i[172]. This gives

βAu ≈ 1 andβSi≈ 0.85. The known parameters of the experiment are the measured vibra-

tion amplitudeA = 16nm and the tip radiusR≈ 25nm, obtained from the manufacturer

data sheet (Nanosensors, model PPP-NCHPt). The sample was prepared by evaporating

a 50 nm thick Au layer on top of a Si crystal and a sharp transition between Au and Si

was produced by scratching away the Au film using sharp tweezers. The s-SNOM signal

obtained by scanning the probe perpendicular to the Au-Si boundary is shown in Fig. 5.12.

It can be immediately noticed that the optical signal-to-noise ratio is significantly lower

on the Au-side than on the Si-side in Fig. 5.12. This can be explained by a much higher

roughness of the evaporated Au film compared to the polished Si surface. In particular, the

roughness of the Au film was about 5 nm, whereas that of the Si surface was about 0.7 nm
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according to the simultaneously recorded AFM topography signal.

Apart from the above effect, the behavior of the optical signal in Fig. 5.12 can be described

by two main features: a slow but steady increase from the Si-side towards the Au-side,

and a larger, abrupt increase at the Si-Au boundary. The steady increase in the optical

contrast with the distance from the boundary corresponds tothe continuous transition form

the arrangement illustrated in Fig. 5.11(b) to the one in Fig. 5.11(c). In the former case

the probe illumination is almost the same on both Si and Au, whereas in the latter case the

illumination of the probe is stronger on the Au side than on Sibecause of the larger far-field

reflection coefficientrp. In Sect. 5.2.4, this part of the scattering coefficient was explicitly

introduced as a separate factor, independent of the near-field contrast. Consequently, the

near-field contrast between Si and Au should in principle be determined from the abrupt

change in the s-SNOM signal at the boundary between the two materials. However, there

exist two problems which prevent the direct readout of the signal levels at the boundary.

The first of them is a topography artifact which appears when the probing tip starts climbing

onto the Au film and partially loses contact with the surface.This causes a≈ 50 nm wide

notch in the optical signal that must be avoided in the analysis. The second effect is related

to the interaction of the probe with the Au film edge which produces its own near fields

sensed by the probe and also creates a larger interaction area than a flat surface alone. In

Fig. 5.12 this effect manifests as an offset to the near-fieldsignal reaching its peak value of

≈ 8% of the signal level at the boundary and decaying to negligible values over a distance

of about 150 nm.

To investigate how much do the above issues influence the experimental determination

of the pure near-field contrast, three different methods areemployed to measure the con-

trast between Si and Au in Fig. 5.12. The results obtained this way are compared to each

other and to the theoretical predictions In Table 5.1. The first method (1) uses the average

near-field signal level between 150 and 200 nm from the edge onboth sides (full lines in

Fig. 5.12) to determine the near-field contrast between Si and Au. The said distance was

chosen as the best compromise between the long-range illumination effect favoring shorter

distances from the edge and the short-range artifacts favoring larger distances. Still, the

variation in the illumination over the average 350 nm separation between the measurement

points on the Si and Au side may lead to an underestimated ratio |ηn,Si/ηn,Au| by up to

4%. The second method (2) aims at correcting this problem by extrapolating the linear part

of the near-field signal trace on each side to the pointx = 0 where the contrast between
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Si and Au is calculated. This procedure, depicted by the dashed lines in Fig. 5.12, is ex-

pected to yield the most accurate results for the near-field contrast because it is immune to

both the long-range illumination effects and the short-range artifacts described in preced-

ing paragraph. Finally, the third method (3) avoiding the illumination effects, but not the

edge artifacts is also presented in Table 5.1 for completeness. It uses the values closest to

the edge on both sides, marked by the dotted lines in Fig. 5.12. Although the values can be

read very precisely with this method, its accuracy is the worst of all three methods because

of the edge effects and the noise which can significantly alter the results since no averaging

is applied.

-2000 -1000 0 1000 2000
x HnmL

0.2

0.4

0.6

0.8

1

1.2

1.4

ÈΣ
2
È
Ha

.u
.L

Si

Au

(a)

-2000 -1000 0 1000 2000
x HnmL

0.25

0.5

0.75

1

1.25

1.5
ÈΣ

2
È
Ha

.u
.L

Si

Au

(b)

Figure 5.12: Line scan of the transition area between large flat Au and Si surfaces. Shown is
the amplitude of the detected scattering signal demodulated at the (a) second,
and (b) third harmonic of the probe vibration frequency.

The comparison of the experimental results in Table 5.1 indicates that all three methods

yield almost the same results, each differing from the others by less than 4%. This value

is comparable to the estimated measurement errors of 2−6%, which means that any of

the three methods may be used in practice if an error of up to≈ 5% can be tolerated.

Further comparison of the experimental results to the theoretical predictions for the Si/Au

near-field optical contrast demonstrates that the monopolemodel is very successful in pre-

dicting the measured near-field contrast for both the secondand the third harmonic of the

detected scattering signal. Furthermore, the predicted values lie within the bounds of the

experimental error of the most accurate measurement (2). The dipole model, on the other

hand, overestimates the Si/Au near-field contrast by more than 25%.
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|σ2,Si/σ2,Au| |σ3,Si/σ3,Au|
Experiment (1) 0.59±0.02 0.52±0.02
Experiment (2) 0.61±0.01 0.54±0.01
Experiment (3) 0.59±0.03 0.52±0.03

Monopole model 0.61 0.55
Dipole model 0.79 0.77

Table 5.1: Near-field optical contrast between Si and Au measured close to the material
boundary. The experimental values denoted (1), (2) and (3) were obtained from
the full, dashed and dotted line pairs atx = 0 in Fig. 5.12, respectively.

The superiority of the monopole model over the dipole model could have been anticipated

in this example because the monopole model contains two parameters which were ad-

justed to provide the best fit to the experimental data. A hypothetical introduction of free

parameters into the dipole model would surely provide just as good agreement to the mea-

sured Si/Au contrast as the monopole model does. As shown in [75], even the distance-

dependence of the near-field signal can be fitted with an extended version of the dipole

model in which the dipole assumes the polarizability and thecenter position of a spheroid

instead of a sphere. However, such a model results in an even worse fit to the near-field

spectra of resonant samples due to the reduced near-field coupling strength caused by the

shift of the dipole away from the surface. Even if two parameters are introduced into the

dipole model through the adjustable position and polarizability of the dipole, it still seems

to be capable only of improving one aspect of its performanceat the expense of another

one. This may be the reason why no extension to the point dipole model has been reported

so far capable of simultaneously predicting data from all kinds of experiments with the

same set of parameters. On the other hand, the monopole modelalready succeeds at this

task, as will be shown next with two more challenging examples.

A more rigorous and thus more interesting test for the theoretical models is the near-field

signal behavior as a function of the tip-sample distance. This kind of plot is usually called

an approach curve, although a more proper name would be a retract curve. This is because

such curves are experimentally obtained by switching off the closed-loop distance control

of the AFM and moving the sample away from the probe. The absence of precise distance

regulation makes the approach curves more noisy than the signal in the normal operation

mode. Additionally, the near-field signal level at significant probe-sample distances is very

weak, so that averaging over a larger number of approach curves is often performed to

obtain more reliable results.
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The second and third harmonic approach curves obtained as the average value of 100 single

approach curves above a gold surface are presented in Fig. 5.13. The measurements were

carried out with a probing tip (Nanosensors, PPP-NCHPt) which radiusR = 20 nm was

estimated from the topographical resolution, and the measured vibration amplitude was

A= 18 nm. The theoretical values were obtained from the monopole model using the same

values of parametersg andL as above.
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Figure 5.13: Approach curves on a gold surface demodulated at (a) second harmonic (n =
2) and (b) third harmonic (n = 3). Shown are the experimentally obtained
values (dots), and predictions by the monopole model (full line) and dipole
model (dashed line). The values are normalized to the signalat H = 0
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Figure 5.14: Approach curves on a silicon surface demodulated at (a) second harmonic
(n = 2) and (b) third harmonic (n = 3). Shown are the experimentally ob-
tained values (dots), and predictions by the monopole model(full line) and
dipole model (dashed line). The values are normalized to thesignal atH = 0.
The lower experimental approach curve (red dots) in part (b)was obtained by
complex averaging of raw data, whereas the absolute vales were averaged for
the upper curve (blue dots).

The agreement between the observed second harmonic (n= 2) signal in Fig. 5.13(a) and the

prediction by the monopole model is almost exact. This is an indication that the distance
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dependence in the monopole model is indeed a good approximation of the true tip-sample

interaction. On the other hand, the dipole model predicts a much faster decay of the signal

than actually observed. This is not surprising since the dipole field decay 1/z3 is much

faster than monopole one, 1/z2. Similar comments can be made about the third harmonic

in Fig. 5.13(b) as well.

The same kind of measurement repeated on a silicon surface isshown Fig. 5.14. The sec-

ond harmonic signal on Si again shows excellent agreement with the monopole model

prediction, and the dipole model exhibits an even larger discrepancy than above the Au

surface. Unfortunately, a meaningful comparison between the experimental and theoretical

approach curves atn = 3 on Si is not possible because of a large amount of complex noise

contained in the recorded optical signal. Due to this noise,different results are obtained

depending on whether the absolute value is taken before or after averaging the measure-

ment results, as shown in Fig. 5.14(b). Assuming that the true third-harmonic approach

curve would lie between the two experimental curves shown, it would be again very close

to the monopole model prediction. However, further investigations are necessary to decide

whether this is indeed the case.

Altogether, it seems reasonable to conclude that the monopole model represents a sig-

nificant improvement over the dipole model concerning the distance dependence of the

near-field interaction.5.4.3 Near-�eld Spetra of Resonant Samples
The denominator in the Eq. 5.24 will be now examined again. Itwas already mentioned that

the expression 4 ln( r/4)−β (4g−4h−3r) ln(h+ r/2) cannot be equal to zero because

of the imaginary part of the constantsβ andg. However, depending on the actual values of

these factors, the denominator ofη can in some case approach zero. This gives rise to the

near-field resonance discussed in Sect. 2.5, first demonstrated on a silicon carbide surface

aroundλ = 11µm[63]. The effect was found to occur for the real part of the dielectric

constant aroundε ′ ≈−2, i.e. the real part of the reflection coefficientβ ′ ≈+3.

The strength of the near-field interaction between a probingtip and SiC surface in contact

with it is plotted according to the monopole and dipole models in Fig. 5.15(a). We see that

both models predict a resonant response, but the predicted position and the strength of the

resonance are different. The probe polarizability, and therefore also the near-field interac-

tion strength is greater in the monopole model, so that the resonance condition is reached
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Figure 5.15: Scattering signal generated by the near-field interaction between a probing tip
and SiC surface, relative to Au surface. Predictions by the monopole model
(full line) and dipole model (dashed line) are displayed forthe case of a sta-
tionary (non-oscillating) probe in contact with the sample.

at lower values of re(β ). From Fig. 3.1(b) we see that lower values of re(β ) correspond to

lower frequencies, where the damping is also weaker, thus explaining why the predicted

magnitude of the near-field resonance is larger in the monopole model. However, neither

of these predictions can be directly compared to the measured values since the near-field

signal is recorded by a s-SNOM only at a higher harmonic of theprobe vibration frequency

to suppress the background signal.

When the tip vibration is taken into account, the situation becomes more complicated since

both the interaction strength and its distance dependence must be correctly modeled at the

same time. The prediction for the harmonics of the scatteredfield in the region of near-field

resonances therefore represents the ultimate test for the theoretical models.

Fig. 5.16 displays the comparison of the theoretically predicted and experimentally ob-

served near-field spectra of a 4H-SiC crystal cut parallel tothe c-axis (cf. Sect. 5.3).

For theoretical predictions, the polarizabilities given by Eq. 5.29 (monopole model) and

Eq. 2.10 (point dipole model) were used and the signal demodulation was performed ac-

cording to Eq. 5.40. The experimental parameters used were the probing tip radiusR≈
35nm (MikroMasch, CSC37/Ti-Pt) and the vibration amplitudeA = 25nm, and the values

of g andL were not changed (g = 0.7e0.06i , L = 300nm). To minimize the influence of the

far-field reflection factorrp, the measurement was performed about 200nm far from the

boundary of SiC crystal surface and 30nm thick Au film evaporated onto the SiC crystal.
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Figure 5.16: Near-field spectra of a 4H-SiC crystal cut parallel to c-axis. Shown are the
values obtained experimentally (dots) and predictions by the monopole (full
line) and dipole model (dashed line) for the second and thirdharmonic ampli-
tude and phase.

From Fig. 5.16 it is obvious that the monopole model reproduces the experimental spectra

much better than the dipole model. Apart from the signal phase in the region above the

resonance, the monopole model exhibits a quantitative agreement with the experiment. As

a result, the ultimate goal of recovering the optical constants on the nanometer might finally

become reachable.
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In Chapter 5, a new ”monopole” model of the near-field interaction between s-SNOM

probes and investigated samples was presented. Even thoughthe near-field interaction was

shown to be mediated primarily by the evanescent fields in thegap between the probe

and sample, the interaction can still be detected and measured far from the probe. This is

possible because of an additional dipole momentp induced in the probe as a consequence

of the near-field interaction. The dipole momentp oscillates with the illumination field

frequencyω and therefore radiates light which can be utilized to measure the near-field

interaction strength. This light is usually referred to as the ”near-field signal” or even ”near-

field scattering”. Strictly speaking, the latter term should be understood as a shorthand for

”near-field-interaction-induced scattering”.

The near-field interaction described by the monopole model only takes place after an ini-

tial dipole p0 has been induced in the probe by the illumination fieldE0 (Fig. 5.2). By

definition, p0 is the constant part of the total tip dipole momentp = p0 + p, not affected

by the near-field interaction. For this reason, the light radiated byp0 conveys no informa-

tion useful for near-field microscopy and represents the s-SNOM ”background signal” or

”background scattering”.

It is long known that the background signal may cause variousartifacts in s-SNOM images

and should be suppressed as much as possible[43, 56, 57, 69, 173]. The mechanism of

background signal generation and methods for its separation from the near-field signal are

examined in this chapter. A new ”pseudo-heterodyne” s-SNOMsignal detection technique

is thereby introduced and its advantages for near-field spectroscopy are demonstrated in

comparison to alternative techniques.
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We start the investigation of the background signal by deriving the total scattering con-

trastσ of the coupled tip-sample system, including both the near-field and the background

contributions. For the model spheroid from Chapter 5, the result was already derived in

Eq. 5.34, repeated here for convenience:

σ = kσ (1+crp)2(γ0−1)w2L3 (1+η). (6.1)

Figure 6.1: Approximate calculation of the background dipole momentp0,T of a real tip:
the model spheroid backgroundp0 = 2Q0L is increased top0,T in proportion
to the ratio of the true tip lengthLT to the model spheroid length 2L. This is
equivalent to shifting the charge−Q0 to the real tip end without changing its
value, yieldingp0,T = Q0LT .

For a real tip, the situation is more complicated because themodel probing tip length 2L

differs from the true tip lengthLT . While the model tip length 2L measures the portion of

the tip responsible for the near-field interaction, the background scattering is produced by

the entire lengthLT of the tip shaft in focus. UnlessLT ≪ λ , the scattering by the entire tip

requires a full electrodynamic treatment. Since this wouldmake the analysis considerably

more difficult, a simple estimate will be made here instead. In particular, the difference

between the model spheroid length 2L and the probing tip lengthLT will be accounted

for by increasing the contribution of the background scattering in proportion to the probe

length. This is equivalent to moving the charge−Q0 from the point close to the spheroid

end to a point near the opposite probe end without changing its value, as illustrated in

Fig. 6.1. Although it represents just a rough estimate, the result obtained is much more
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satisfying than the alternative approach of increasing thetip length toLT before the charge

Q0 is calculated, which would inevitably lead to a large overestimate in both the near-

field and background signal strength because of the neglected retardation effects. With this

approximation, the background dipole moment of the tip becomesp0,T ≈ Q0LT , resulting

in the total dipole moment

pT = p0,T + p = LQ0(χT +η), (6.2)

with the factorχT = LT/2L. In analogy to Eq. 5.34, the approximate scattering coefficient

σT of the probing tip may be written as

σT = kσ (1+crp)2(γ0−1)w2L3 (χT +η). (6.3)

To determine the numerical value ofχT , we can turn to Sect. 5.4, where a good fit to

experimental values was obtained by using the value 2L ≈ 0.6µm. Given the tip length

LT ≈ 15µm, the background signal is expected to be between one and two orders of mag-

nitude stronger than the near-field contribution. The effect of adding the background scat-

tering to the near-field signal is illustrated in Fig. 6.2 using the SiC near-field resonance

as an example. ForχT = 24, the maximum relative DC contrast between SiC and Au

measured by a long tip (Fig. 6.2(b)) is reduced by a factor of about 20 compared to the

contrast obtained using a small spheroid (Fig. 6.2(b)) and about 50 compared to the pure

near-field contrast (Fig. 5.15). Since the SiC near-field resonance represents an example
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Figure 6.2: DC scattering contrastσ for a r = 20nm probe in contact with a SiC crystal
surface, relative to Au surface. Shown are the scattering contrasts calculated
for (a) a small spheroid withLT = 2L, and (b) a long tip withLT = 24L. The
parts (a) and (b) can also be compared to Fig. 5.15, where the same calculation
with LT = 0 is shown.
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of very strong contrasts, it is likely that under such circumstances the near-field contrast

between two non-resonant materials would be hardly noticeable at all. Yet despite such

largerelativecontrast loss, theabsolutecomplex contrast is not affected at all because the

background term is additive with respect to the near-field signal. Therefore, it should still

be possible to recover the pure near-field contrast, provided the background contribution

can be eliminated.6.1.1 Di�ration Artifats
Besides the loss of the relative contrast, there exists one further reason why the background

has to be suppressed. In particular, the background scattering is generated by the entire

probing tip body and therefore depends on the exact tip shapeand the illumination profile

along the tip shaft. The illumination profile can change overshort and long distances in

very complicated ways due to perturbations of the illumination field. The perturbations

can be caused, for example, by diffraction of the waves reflected from an inhomogeneous

surface. Since the perturbations modify the illumination profile along the tip shaft, they

necessarily influence the background scattering. The key point here is that changes in the

background scattering have exactly the same impact on the detected signal as the changes

in the near-field interaction. Yet the background signal is much stronger than the near-

field part, so even a small change in the background signal maybe sufficient to overwhelm

the near-field contrast. An example of this effect observed experimentally in the visible

spectral range can be found in [174], Fig. 4.6. It clearly demonstrates that diffraction can

produce optical contrasts which do not resemble the original structure of the surface and

also do not coincide with it spatially. Both of these properties are disadvantageous for the

near-field microscopy and should be avoided for reliable near-field imaging.6.1.2 Topography Artifats
The diffraction artifacts can be often recognized when theyappear in the near-field images

because they exhibit variations on the wavelength scale andbear no resemblance to the

sample topography. Although in this case the topography helps to spot the diffraction

artifacts, it can cause another kind of artifacts on its own.Namely, it has been observed

that an optical contrast can be obtained solely due to the small variations in the sample

surface height, with no relation to the optical properties of the material under the probe
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[175]. Unlike the diffraction artifact, the topography artifact induces the optical signal

variations as fast as the change in the sample height. For this reason it is easily mistaken

for the true optical contrast. The origin of this artifact can be understood by examining

the interference of the directly incident and reflected waves above the sample, as shown in

Fig. 6.3. A region of ”standing waves” is formed where the twowaves strongly interfere.

This interference makes the scattering amplitude dependent on the height above the surface.

Since the probing tip always follows the topography of the sample, its vertical position in

(a) (b)

Figure 6.3: Gaussian beam with waist size 2λ reflecting off a silicon crystal surface.
Shown are (a) amplitude and (b) phase of the resulting wave.

the standing wave field can change slightly as the sample is scanned below the tip. It is

thereby important to note that the standing wave field is susceptible to variations on the

wavelength scale and does not follow the rapid local height variations. As a consequence,

the background scattering changes in response to the sampletopography. Although the

background signal change due to a few tens of nanometers topography is quite small, it

is important to remember that only a few percent change in thebackground scattering

can represent a significant variation in comparison to the pure near-field contrasts since

pi ≪ p0,T , i.e. η ≪ χT . A detailed analysis of the topography artifacts can be found in

[56] and [176].

The examples presented above serve to motivate the efforts to suppress the background

scattering as much as possible. One obvious way to reduce thebackground would be to

tailor the probing tip to the shortest possible length without reducing the near-field signal

strength. In the best case, the total tip length should be equal to the effective tip length

participating in the near-field interaction,LT ≈ 2L. However, no experimental results in

this direction have been reported yet. Even if such an approach eventually turns out to

be effective, it still would not be able to completely eliminate the background, despite the
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presumably large effort required. Rather, it would only bring the near-field and background

signal strength to the approximately same order of magnitude.

Because the background signal can never be completely eliminated, a method is needed to

separate the background from the near-field signal after it has been generated. As will be

shown next, two different techniques are actually simultaneously required for a complete

background suppression because there are two different contributions of the background

to the measured scattering signal: one of them is additive, and the other one multiplicative

with respect to the near-field signal.6.2 Additive s-SNOM Bakground6.2.1 Origin of the Additive s-SNOM Bakground
The scattering coefficientσT from Eq. 6.3 can be naturally divided in two terms; the near-

field scattering coefficientσN and the background scattering coefficientσB defined as

σN = kσ (1+crp)2(γ0−1)w2L3 η, and (6.4)

σB = kσ (1+crp)2(γ0−1)w2L3 χT . (6.5)

Added together, they give the total scattering coefficient of the probing tip,σT = σN +

σB. According to its definition,χT is a constant number and does not depend on the

probe-sample distance or interaction. On the other side, the near-field contrast factorη
(Eq. 5.24) is a measure of the near-field interaction strength and vanishes for large distances

between the probe and the sample. Based on these facts, the extraction of the pure near-

field signal might look like a straightforward task. In particular, if the scattering coefficient

σT(H →∞) = σB measured with the probe far away from the sample is subtracted from the

scattering coefficientσT(H = 0) obtained with the probe in contact with the sample, the

differenceσT(H = 0)−σT(H → ∞) = σN(H = 0) corresponds to the near-field scattering

coefficient atH = 0.

Unfortunately, the approach outlined above does not work for the same reason the topog-

raphy artifacts (Sect. 6.1.2) appear. Namely, background signal changes with the probe

distance from the sample due to the interference between thewaves directly incident on

the probe and those reflected from the sample. This observation demands the complex

coefficientc in Eqs. 6.4 and 6.5 to be treated as a function of the distanceH between the
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probe and the sample. As a consequence,σB(H → ∞) 6= σB(H = 0), and no definite con-

clusion about the near-field scattering coefficientσN can be made based on the difference

σT,∞−σT,0.

An alternative method of background signal suppression[43] relies on the measurement

of the change in the scattering coefficientσT over short distancesH, on the order of the

probing tip radiusR≪ λ . Over such distances, the illumination field due to the interference

between the direct and reflected waves remains almost constant, so that the background

term σB only changes very slightly and a large part of the scatteringcoefficient change

can be attributed to the near-field signal. In principle, therequired distance variation may

be achieved by moving either the probe or the sample. Since ithas to be done repeatedly

one or more times for each pixel in an image, it is in practice more convenient to vary the

tip-sample distance by letting the probing tip vibrate. This enables the average distance

to be regulated based on the tip vibration amplitude and the distance variation can also be

performed significantly faster since the tip mass is much lower than the mass of the entire

sample and its carrier.

Due to the tip vibration, the scattering contrastσT is periodically modulated with the fun-

damental frequency equal to the tip vibration frequencyΩ. Being a periodic function of

time, σT can be decomposed into harmonic components with frequencies Ωn = nΩ and

amplitudesσT,n. The amplitudesσn are thereby equal to the Fourier series coefficients of

σT , as explained in Sect. 5.4.1.

Since the Fourier transform is a linear operation, we can separate the harmonic amplitudes

σT,n into a ear-field and a background part the same way as the original functionσT to

obtainσT,n = σN,n+σB,n. To estimate the ratioσN,n/σB,n, let us recall that the background

signal oscillates on the wavelength (λ ) scale (Fig. 6.3), whereas the near-field signal di-

minishes over a few tip radiiR≪ λ (Fig. 5.1). Since higher harmonics have higher fre-

quencies, they measure faster changes in the scattering signal and favor the increase in the

ratio σN,n/σB,n with increasing indexn. This means that by choosing a sufficiently large

n, the pure near-field scattering contrast can be recorded. This approach to background

suppression is known as the higher-harmonic demodulation technique [56, 57, 170].

In the following, a quantitative analysis of the relation between the near-field and back-

ground scattering coefficientsσN,n andσB,n will be presented in order to find the experi-

mental parameters which maximize the ratioσN,n/σB,n.
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To reduce the complexity of the analysis, several simplifications will be made. First of all,

only plane wave illumination will be considered. Second, the probing tip vibration ampli-

tudeA will be assumed to be small with respect to the illumination wavelength,λ ≫ A.

With the illumination in the form of a focused Gaussian beam and the typical experimental

parametersA≈ 20nm,λ ≈ 10µm, the said approximations should not have a significant

influence on the end result. Third, the probing tip will be reduced to a point scatterer at

its apex for a first qualitative analysis, and fourth, the reflection from the sample will be

ignored for the beginning. The last two simplifications haveconsiderable influence on the

end result and will be reconsidered later.

In practice, having no reflections from the sample means thatthe probe is actually located

far away from the sample, in which case no interference pattern akin to Fig. 6.3 is formed.

Under this condition, we can assume the incident field magnitude is constant over the entire

tip trajectory as long as the tip vibration amplitude is small compared to the wavelength

and therefore also to the focal spot size. However, the incident (and thus also the scattered)

field phase does change as the tip oscillates. If we denote themean tip-sample distance by

H0, the optical path difference to an arbitrary pointH0 +∆H on the tip trajectory is equal

to ∆S= ∆H cosθ , as depicted in Fig. 6.4. Substitutingλ = 2π/k0, we obtain the phase

difference between the pointsH0 andH0+∆H:

∆ϕ = k0 ∆S= k0 ∆H cosθ . (6.6)

Since the probing tip oscillates according to the function∆H = A cosΩt, the illumination

field phaseϕ continuously changes according to the functionϕ = Φ0cosΩt. The phase os-

cillation amplitudeΦ0 is equal to∆ϕ from Eq. 6.6 at the point of the maximum elongation

∆H = A:

Φ0 = Ak0 cosθ . (6.7)

The same path difference is encountered again with the radiated waves, thereby doubling

the total optical phase variation in the scattering coefficient. This requires Eq. 6.5 to be

rewritten as

σB = kσ ei 2Φ0 cosΩt (γ0−1)w2L3 χT , (6.8)

where the reflection form the sample has been neglected because the sample is assumed to
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Figure 6.4: Optical path length change due to the motion of the scattering source.

be out of focus.

The additional factorei 2Φ0 cosΩt in Eq. 6.8 can be interpreted as a sinusoidal phase modu-

lation of the scattering signal. Since the cosΩt factor stands in the exponential, the phase

modulation is obviously not a linear process and it necessarily produces higher harmonics

of the modulation frequencyΩ. The amplitudes of the higher harmonics can be obtained

form the Fourier series decomposition of the functionσB(t). All factors in Eq. 6.8 ex-

cept f = ei ϕ = ei 2Φ0 cosΩt are constant and are not affected by the Fourier expansion. The

Fourier coefficientsfn of the functionf can be expressed in terms of the Bessel functions

of the first kind,Jn [155, 176, 177], yielding

fn = Jn(2Φ0) in. (6.9)

Since we are considering small vibration amplitudesA≪ λ , we haveAk0 ≪ 1 and there-

with Φ0≪ 1. This permits the Taylor expansion of coefficientsfn aroundΦ0 = 0:

fn =
(i Φ0)|n|

|n|! +O(Φ0)2. (6.10)
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With the aid of Eq. 6.10, the background scattering coefficients can be calculated:

σB,n≈ kσ
(i Φ0)|n|

|n|! (γ0−1)w2L3 χT . (6.11)

Given thatΦ0 ≪ 1, the above expression reveals a rapid decrease in the amplitude of the

background scattering coefficient with the harmonic indexn, just as expected from the

qualitative arguments presented in the introduction to Sect. 6.2.

Note that the absolute value|n| has been used in Eq. 6.10 to explicitly allow for all integer

values ofn, both positive and negative. The provision for such values of n is necessary

for the following reason: when the modulation described Eq.6.8 is applied to the optical

carrier wave oscillating at frequencyω, the carrier gets split into sidebands with lines at

frequenciesωn = ω + nΩ, i.e. both higher and lower than the carrier wave frequencyω.

Since the expansion coefficientsσB,n are symmetric aroundn = 0 and they overlap upon

the measurement of the carrier wave intensity by a photodetector, for practical purposes it

is often irrelevant whethern is taken to include negative values or not.6.2.3 Estimating Probe Vibration Amplitude
A short digression will be made here before proceeding to theanalysis of the background

scattering in the presence of the sample. Returning to Eq. 6.11, it can be easily seen that

it provides an interesting possibility to obtain the probing tip vibration amplitude from

the ratio of two subsequent background scattering coefficientsσB,n−1 andσB,n, n≥ 1. In

particular,
σB,n

σB,n−1
=

i Φ0

n
=

iAk0cosθ
n

. (6.12)

With the probe far from the sample, there are no reflection from the sample surface (c = 0)

and also no near-field interaction (η = 0). The measured scattering coefficientsσT,n are

thus equal to the background coefficientsσB,n. As a corollary, we get a purely optical and

contactless means to measure the absolute tip vibration amplitude:

A =
n|σB,n|λ

2π|σB,n−1| cosθ
. (6.13)

The only prerequisites for this are the known illumination wavelengthλ and the illumi-

nation angleθ . Since in most cases the DC signal (σB,0) is not available either because



99 6.2 Additive s-SNOM Background

it is not measured at all or because it is contaminated by reflections and scatterings from

sources other than the probing tip, the lowestn acceptable is usuallyn = 2. The back-

ground signal atn= 2 can be rather weak, so the detection sensitivity must be high enough

to measure this signal.

As a conclusion, let us note that the vibration amplitudeA obtained this way should be

used only as an estimate because Eq. 6.13 was derived for a single point scatterer and not

for an elongated tip and also the illumination angle is not very precisely defined for a

focused light beam. Nonetheless, with the wavelengthλ ≈ 10µm and vibration amplitudes

A≈ 20nm, the results obtained from the background signal measurements with the aid of

Eq. 6.13 were experimentally found to differ by only about 10% to 20% from the vibration

amplitudes determined by the standard procedure of monitoring the cantilever deflection

signal decrease as the average distance between the probe and the sample in the intermittent

contact mode is continuously reduced.6.2.4 Bakground Sattering in the Proximity of the Sample
Eqs. 6.11 and 6.13 are only valid when the probe oscillates far from the sample so the

reflections from the sample surface can be ignored. Clearly,near-field signals must be

measured in the immediate vicinity of the sample surface. Close to the surface, the probe

is illuminated by both the directly incident and the reflected waves which together form a

”standing wave” pattern, shown in Fig. 6.3. In the region of strong interference between in-

cident and reflected waves, it is mostly theamplitudeof the illumination field that changes

with the probe-sample distanceH, rather than its phase. However, each interfering wave

itself still has a constant amplitude and a changing phase. The phase change of the directly

incident wave in the form of Eq. 6.6 has been derived from Fig.6.4. By symmetry, only the

sign of the phase change∆ϕ in Eq. 6.6 has to be inverted for the reflected wave, yielding:

∆ϕr =−∆ϕd =−k0 ∆S=−k0 ∆H cosθ . (6.14)

With this information, Eq. 6.5 can be improved to account forthe changing phase depend-

ing on the probing tip position:

σB = kσ

(
ei ∆ϕ +crpe−i ∆ϕ

)2
(γ0−1)w2L3 χT , (6.15)
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with ∆ϕ = Ak0 cosθ cosΩt = Φ0cosΩt, obtained by expanding∆H in Eq. 6.14 as∆H =

A cosΩt. To determine the Fourier coefficients ofσB, it suffices to consider only the func-

tion f = (ei Φ0cosΩt + crpe−i Φ0 cosΩt)2 since all other values are constant by definition.

Expanding the square inf ′, we get:

f = ei 2Φ0 cos(Ωt) +c2 r2
pe−i 2Φ0 cos(Ωt) +2crp. (6.16)

The Fourier expansion of Eq. 6.16 can now be performed term-by-term. The Fourier coef-

ficient of the last term in Eq. 6.16 is just 2crpδn, whereδn is the Kronecker delta symbol.

The remaining two terms can be immediately noted down by analogy to coefficientsfn in

Eq. 6.10. This way we obtain

fn ≈ (i Φ0)|n|

|n|! +c2 r2
p
(−i Φ0)|n|

|n|! +2crpδn, (6.17)

or, equivalently,

fn ≈ (i Φ0)|n|

|n|! (1+c2 r2
p(−1)n)+2crpδn. (6.18)

With fn from Eq. 6.18, the Fourier series coefficientsσB,n assume the following form:

σB,0 ≈ (1+crp)2(γ0−1)w2L3 χT , and

σB,n6=0 ≈ kσ
(i Φ0)|n|

|n|! (1+c2 r2
p(−1)n)(γ0−1)w2L3 χT . (6.19)6.2.5 Overall Sattering Coe�ient

To obtain the total scattering coefficient including both the near-field and background con-

tributions, the effect of the scattered field phase modulation by the vibrating tip on the near

field signal has to be determined. The initial expression forσN is easy to derive by analogy

to the background signalσB from Eq. 6.15:

σN = kσ

(
ei ∆ϕ +crpe−i ∆ϕ

)2
(γ0−1)w2L3 η. (6.20)

However, the analogy betweenσB andσN cannot be extended to the Fourier coefficients

σB,n andσN,n because unlikeχT which is constant, the near-field contrast factorη depends

on the probe-sample distance. For this reason there are two quantities which depend on the

time variablet in Eq. 6.20:∆ϕ andη. The integral which needs to be evaluated to obtain
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the expansion coefficientsσN,n thus reads (cf. Eq. 5.43):

σN,n6=0 = kσ (γ0−1)w2L3 1
T

∫ T/2

−T/2
f (t)η(t)e−inΩt dt, (6.21)

with f (t) =
(
ei Φ0 cosΩt +crpe−i Φ0 cosΩt

)2
as before. The factorsf andη in the integrand

of Eq. 6.21 cannot be separated before integration, but convolution theorem can be applied

to the resulting Fourier coefficientsfn andηn. This way we obtain

σN,n ∝ ∑
m∈Z

ηn−m fm (6.22)

As already mentioned, the coefficientsfm ∝ (i Φ0)|m|/|m|! given by Eq. 6.18 drop rapidly

with the increasing absolute value ofm due toΦ0 ≪ 1 , so only the termηn f0 should be

kept in sum 6.22. From Eq. 6.18, we getf0 = (1+ crp)2, and the near-field scattering

coefficient becomes

σN,n ≈ kσ (1+crp)2(γ0−1)w2L3 ηn. (6.23)

It is important to keep in mind that although the termsηn−m fm, m 6= 0 in Eq. 6.22 can

be neglected in comparison toηn f0 becausefm≪ f0, the background signalσB,n ∝ χT fn

detectable at the same frequency asσN,n cannot be ignoreda priori due to the large value

of χT which might compensate for the small values offn.

CombiningσB,n from Eq. 6.19 andσN,n from Eq. 6.23, the overall scattering coefficient

σT,n6=0 can be constructed:

σT,n = σB,n+σN,n ≈ kσ (γ0−1)w2L3 ·

·(χT
(i Φ0)|n|

|n|! (1+c2
Br2

p(−1)n)+η (1+cN rp)2). (6.24)

Before proceeding to the quantitative comparison ofσN,n andσB,n, the introduction of two

different coefficientscB andcN has to be explained. It is clear that if the probing tip is

approximated by a point scatterer, there is only one value ofc necessary:

cB = cN = c = e−i k0 H0 cosθ . (6.25)

The meaning of the quantitiesH0 andθ is illustrated in Fig. 6.4. As soon as the true tip

size is taken into account, two different coefficientscB andcN are needed because, at least
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according to the monopole model, the total tip lengthLT is not the same as the length

2L participating in the near-field interaction so the background and near-field scattering

originate from different positions. Further progress in determining the coefficientscB and

cN is hard to make because in addition to the probe distance fromthe sample, they are

dependent on several other factors, including the exact probe shape and length together

with the illumination profile along it.

Assuming the background part will be suppressed by choosinga sufficiently largen, we

need to determine only the factorcN. If the probe is approximated by a spheroid of length

2L as in the monopole model, and the point scatterer (dipole) which Eq. 6.25 refers to is

placed in the center of the spheroid, we haveH0 = H +L and therewith

cN = e−i k0 (H+L) cosθ . (6.26)

One further correction tocN is needed to account for using a focused illumination instead

of a plane wave illumination assumed in 6.26. If the focal spot has e.g. a Gaussian pro-

file centered on the tip, the sample might only reflect the tailof this profile onto the tip,

thereby making the absolute value of the coefficientcN smaller than unity. Because of the

large uncertainty in the actual beam profile and position relative to the probing tip, later in

Chapter 7 the absolute value ofcN will be adjusted based on the fit between the theory and

the experiment.

Besides the factorcN, there exists one more problem with Eq. 6.24, namely the reflec-

tion coefficientrp. While it is easy to determine on flat homogeneous surfaces, structured

surfaces may give rise to diffraction, thereby changing theeffective value ofrp. Beside

the perturbations in probe illumination field caused by the reflected waves, a part of the

incident light intensity can also be diffracted into surface waves if the sample material sup-

ports them. Except when this effect is exploited to investigate the properties of these sur-

face modes such as surface phonon or plasmon polaritons [97], it represents an unwanted

disturbance which can interfere with the measurement of material-specific near-field con-

trasts. As discussed in Sect. 3.3, surface polaritons propagate on the interface between two

materials with opposite signs ofε ′ (real part of the dielectric function). This condition is

always satisfied by near-field resonant samples (ε ′ ≈−2) in air or vacuum, so that special

care must be taken to minimize the excitation of surface polaritons in order to obtain re-

liable near-field spectra of resonant samples. Furthermore, a strong local perturbation of

the electric field may be caused by small polariton resonant particles or gaps. This effect
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can be exploited to map the eigenfields of resonant structures[178], but it should also be

avoided for the analysis of the chemical or structural composition of the sample.

It is important to note that perturbations of the illumination field influence not only the

background but also the near-field signal, in the form of a multiplicative factor. For this

reason, their manifestation in s-SNOM images can be eliminated neither by the higher-

harmonic demodulation technique nor by any other known background suppression tech-

nique. However, two possible solutions to this problem willbe proposed here as an aid for

future attempts to factor the variations in the illumination field out of s-SNOM images.

The first proposed solution consists of recording the near-field scattering signalσN,n de-

modulated at two different harmonicsn andmand finding the ratioσN,n/σN,m. In the next

section it will be shown that this ratio is dependent on the optical properties of the investi-

gated material, but any multiplicative factor constant over the oscillation cycle of the probe

cancels when the ratioσN,n/σN,m is calculated. Furthermore, this procedure might also

obviate the normalization step in the process of the near-field spectrum construction (sect.

2.5.1). However, a big disadvantage of such approach is the reduction in the near-field

contrast it causes. Preliminary calculations indicate that this way only about 10% contrast

between Au and Si surfaces should be expected instead of about 35% obtained by direct

comparison of scattering coefficients (Sect. 5.4.1).

Alternatively, all Fourier coefficientsσT,n of the scattering coefficientσT having non-

negligible amplitudes (with the possible exception of the DC term σT,0) can be simul-

taneously recorded, and the functionσT(H) reconstructed from them. In the next step,

Eq. 6.24 withη from Eq. 5.24 is used to fit the experimentally obtained function σT(H),

with the dielectric functionε of the sample and the reflection coefficientrp as the adjustable

parameters. To make this possible, the remaining parameters χT , cB, cN askσ should be

pre-calibrated on a sample with known optical properties. It might be an interesting topic

for further research to find out whether a reasonable fit between the theory and the experi-

ment could be achieved this way.6.2.6 Near-�eld vs. Bakground Sattering
It has already been mentioned several times that the background contributionσB,n to the

total scattering coefficientσT,n = σB,n + σN,n becomes negligible compared to the near-

field contributionσN,n if the scattering signal is measured at a sufficiently high harmonic

n. It has been experimentally observed that ”sufficiently high” in practice means second
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or third harmonic (n = 2 or n = 3) in the infrared, and third or fourth harmonic (n = 3 or

n= 4) in the visible spectral range[69]. It was also found that actual choice depends on the

probe vibration amplitudeA and the measurement precision required. However, this topic

was never investigated theoretically. Based on Eqs. 6.19 and 6.23, the first quantitative

prediction of the near-field−to−background signal ratio (NFBR) for different harmonicsn

and vibration amplitudesA is now possible.

For that purpose, the near-field contrast factorη appearing in Eq. 6.23 will be calculated

utilizing the monopole model of the near-field interaction developed in Chapter 5. Further,

since no reliable way to determine the factorc in Eq. 6.19 has been derived, the reflections

from the surface will be completely ignored by settingc = 0 in both Eq. 6.19 and 6.23.

Because both the factorc and the reflection coefficientrp are bound by|c| ≤ 1 and|rp| ≤ 1,

their combined contribution must also lie within the unit circle |crp| = 1. Given no other

prior information, the choicecrp = 0 could thus be interpreted as an average case, in which

the reflections from the surface neither increase not decrease the near-field and background

scattering.

To calculate the NFBR, the parameters pertaining to the experimental conditions have to

be specified. Since all measurements shown in this work were made using a CO2 laser

operating between roughlyλ = 9µm andλ = 11µm, the wavelength will be set toλ ≈
10µm in the calculations. The probing tip will be described by its true lengthLT = 15µm

and the effective length for the near-field interaction 2L = 600nm. Finally, a typical tip

radius of aboutR≈ 25nm will be used.

Fig. 6.5 displays the NFBR obtained with the parameter values specified above for a sample

made of crystalline silicon. We see that the DC background term σB,0 dominates the overall

signal, being almost two orders of magnitude larger than anyother component, including

σN,0. At the fundamental probe vibration frequencyΩ, the near-field and background sig-

nalsσN,1 andσB,1 are almost equal when the amplitudeA is small with respect to the tip

radiusR. The background scattering coefficientσB,1 increases faster than its near-field

counterpartσN,1 asA increases, so that the measured scattering coefficientσT,1 consists

mostly of the background termσB,1 for amplitudesA≈R typically encountered in experi-

ments. ForA≤Randn= 2, the near-field signalσN,2 finally exceeds the background signal

σB,2 by more than one order of magnitude. The ratio ofσN,2 to σB,2 reduces significantly

for larger vibration amplitudes due to the quadratic increase of the background, as sug-

gested by Eq. 6.10 (σB,n ∝ (A/λ )n) [57]. Going to even higher harmonics, the background
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contribution becomes negligible compared to the near-fieldsignal under the experimental

conditions investigated here (A/λ < 0.01).

Finally, it is interesting to compare the predicted NFBR to the experiment. Although the

plots in Fig. 6.5 are intended to provide only a rough estimate, the measured NFBR on

Si surfaceσN,2/σB,2 ≈ 15 is very close to the predicted NFBR≈20 in Fig. 6.5(b) for the

same vibration amplitudeA≈ 25nm as in the experiment. The background signalσB,3 was

below the detection threshold in the same experiment. Such an outcome is also consistent

with the predicted NFBR of aboutσN,3/σB,3≈ 2000.
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Figure 6.5: (a) Amplitude of the background signal harmonics σB,n (dashed lines, B0..B2)
and near-field signal harmonicσN,n (full lines, NF0..NF3) forn = 0..3 as a
function of the probing tip vibration amplitudeA . (b) RatioσN,n/σB,n of the
curves form part (a) . The near-field interaction was calculated using Eq. 5.34
for a Si sample (ε ≈ 12) and the probing tip radiusR= 25nm.
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Figure 6.6: (a) Amplitude of the background signal harmonics σB,n (dashed lines, B0..B2)
and near-field signal harmonicσN,n (full lines, NF0..NF3) forn = 0..3 as a
function of the probing tip vibration amplitudeA. (b) RatioσN,n/σB,n of the
curves form part (a) . The near-field interaction was calculated using Eq. 5.34
for a resonant SiC sample (ω = 930cm−1) and the probing tip radiusR= 25nm.

After an ordinary dielectric material, the analysis of NFBRwill be performed for a near-

field resonant sample. To this end, Fig. 6.6 shows the same results as in Fig. 6.5, but for a

resonant SiC sample instead of Si. The background signal is not affected by the change of

the sample, soσB,n still loses a factorλ/A or about two orders of magnitude per harmonic

n, as expected from Eq. 6.10. However, the near-field scattering coefficientσN,n is about

one order of magnitude higher on SiC than on Si and the background scatteringσB,n is

proportionally less important. For this reason, a satisfying near-field-to-background ratio

of about 10 can be achieved already using the first harmonic (n = 1) and very small vi-
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bration amplitudes (A≈ 6nm). With the second harmonic, the background is negligible

compared to the near-field signal for every vibration amplitudeA shown in Fig. 6.6, as was

also confirmed experimentally.

Another important conclusion which can be drawn by comparing Fig. 6.6 and 6.5 is that

the overall signal level remains almost the same, but higherharmonics are generated with

higher efficiency on a resonant material such as SiC than on a dielectric like Si. For a

typical tip vibration amplitudeA≈ R, the ratioσN,n+1 : σN,n on SiC is as high as 0.7, in

contrast to only 0.25 on Si. This observation indicates thatthe unmodulated (DC) approach

curves for different samples do not simply scale while keeping the same slope. Rather,

their steepness changes so that the higher harmonics of the demodulated signal have larger

amplitudes as the coupling between the probe and the sample increases. At the end of

Sect. 6.2.5, it was suggested that this property of the near-field signal might be used to

suppress the variations in the s-SNOM contrast due to non-uniform reflection of light from

the sample and also to eliminate the need for normalization of all near-field spectra to a

standard reference material.6.2.7 Near-�eld vs. Bakground Sattering and Disturbanes
From Fig. 6.5 and 6.6, it might seem that using a higher harmonic always represents a better

choice since the NFBR is increased this way. This would be true in the absence of noise and

other disturbances in the signal. In practice they set a limit to the signal level that can still be

measured. The quality of the s-SNOM images obtained is therefore ultimately determined

by the ratio of the near-field signal to the background and disturbances (NFBDR). The

disturbances are thereby understood to cover all kinds of unwanted interferences with the

measured signal, including the thermal and shot noise as well as the signal distortion due to

the non-linearity of detectors and amplifiers. It also includes other kinds of disturbances,

like capacitive charge pick-ups or inductive cross-talk between currents in different leads

or cables.

To estimate the influence of the noise on the measured s-SNOM signal it will be assumed

here that a sufficiently high illumination power can be supplied to bring the detector just

below the point of saturation. The CO2 lasers used in this work were found capable of

providing enough power to allow this, thus justifying the assumption. A very good de-

tection system may provide a dynamic range of about 100dB, implying that the noise and

distortion floor should be set to 10−5 of the maximum signal level. The maximum signal
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level is determined almost exclusively byσB,0, making the total background plus noise co-

efficientζn equal toζn = σB,n+10−5σB,0. The ratioσN,n/ζn will be used in the following

as an estimate of the NFBDR. Atλ ≈ 10µm, the s for Si and SiC samples is shown in

Fig. 6.7(a) and (b), respectively. For lower vibration amplitudes, best results are obtained

with the second harmonic, whereas the third harmonic shouldbe used if the vibration am-

plitude is large. The border between the two cases shifts to lower amplitudesA for samples

yielding stronger near-field interaction. It is interesting to note that with the experimental

parameters considered here, the fourth harmonic never represents the optimal choice in the

mid-IR because its signal level is closer to the noise floor than the second or third near-field

harmonics are to their background counterparts.
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Figure 6.7: RatioσN,n/ζn of the near-field signalσN,n to the background and disturbances
ζn (NFBDR) forn = 2..4, assuming a detector dynamic range of 100dB. (a) Si
sample, (b) resonant SiC sample (ω = 930cm−1).

It should be noted that the NFBDR shown in Fig. 6.7 is a theoretical maximum obtainable

only under ideal conditions and long data acquisition intervals. If the illumination power

is not sufficient to take advantage of the entire dynamic range of the detector, or if the

acquisition time is limited due to fast scanning of the sample, the noise level might be

significantly higher. If the dynamic range is reduced to 80dB, the second harmonic might

provide an advantage over the other choices of the demodulation ordern in a much larger

range of vibration amplitudesA, as shown in Fig 6.8(a).

Another interesting comparison can be made between the infrared and visible illumina-

tion. If the illumination wavelengthλ = 600nm is taken instead ofλ = 10µm, the back-

ground scattering becomes a much larger problem. For this reason, the NFBDR similar to

Fig. 6.8(a) might be obtained, withn= 4 representing the best choice for most tip vibration

amplitudes. However, the accuracy of this prediction is rather limited because two assump-

tions of the monopole model are violated in the visible range. In particular, there are no
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perfectly conducting materials which can be used to make theprobing tips. ForR= 25nm

andλ = 600nm, there is also no model spheroid length 2L for whichR≪ L≪ λ . For this

reason, the results in Fig. 6.8(a) should be taken with caution.

Nevertheless, a qualitative comparison between the s-SNOMimaging in the visible and

infrared spectral ranges can still be made on this basis. Thebackground scattering is much

larger and the probing tips are less efficient as optical antennas in the visible range. Fur-

thermore, strong and sharp near-field resonances such as those of SiC are expected to occur

only at infrared frequencies because the plasmon resonances in metals at visible frequen-

cies are more strongly damped than the phonon-polariton resonances in the infrared. Com-

pared to the conventional far-field microscopy, the improvement in the resolution achiev-

able by a s-SNOM is also much larger for the infrared than for the visible light. For all

these reasons, it is clear that the scattering-type near-field microscopy offers much more

advantages when used in the infrared than in the visible wavelength range.
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Figure 6.8: NFBDR for the same probing tip and the sample as inFig. 6.7(a), but with (a)
dynamic range reduced from 100dB to 80dB, or (b) illumination wavelength
λ = 0.6µm and effective tip lengthL = 80 nm instead ofλ = 10µm andL =
250nm.

In conclusion, we have seen that the higher harmonic demodulation technique can eas-

ily improve the signal-to-background ratio by several orders of magnitude. However, this

improvement is only possible at the cost of the reduced signal-to-noise ratio. As a conse-

quence, an optimal choice of the probing tip vibration amplitudeA and the demodulation

ordern exists, depending on the illumination wavelength and the sample response. With the

optimal set of parameters and a near-field resonant sample, the ratio of the near-field sig-

nal to the background and noise may in theory exceed 60 dB. In practice, somewhat lower

values of up to 40 dB are observed due to limited measurement time and other sources of

noise such as mechanical instabilities, which have not beenincluded in this analysis.
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In Sect. 6.2 the light scattered by s-SNOM probing tip was explicitly divided in two compo-

nents: near-field scattering and background scattering. Those two components are coherent

with each other, so the total scattered fieldET measured at some point in space is obtained

by summing the fieldEN due to the near-field scattering and fieldEB arising from the

background scattering to obtainET = EN +EB.

Since the probing tip periodically oscillates with a frequency Ω, bothEN andEB are peri-

odic functions of time and can be expanded in Fourier series,

EN(t) =
∞

∑
n=−∞

einΩtEN,n = E0

∞

∑
n=−∞

einΩtσN,n, and (6.27)

EB(t) =
∞

∑
n=−∞

einΩtEB,n = E0

∞

∑
n=−∞

einΩtσB,n,

whereE0 is the strength of the probe illumination field and the approximate values of the

scattering coefficientsσN,n = EN,n/E0 andσB,n = EB,n/E0 are given by Eqs. 6.23 and 6.19,

respectively. In Sect. 6.2.6, the background scattering coefficientsσB,n have been shown to

rapidly decrease in comparison to the near-field scatteringcoefficientsσN,n as the indexn

is increased. By choosing a sufficiently high harmonicn, in theory, the background field

can be made negligibly low.

However, this technique alone is not sufficient to completely eliminate the background

contribution from thedetectedsignal [69] because the detectors of light cannot directly

measure the electric field strength. Instead, they produce output currents of voltages pro-

portional to the number of photons they absorb. Yet the number of photons striking the

detector is proportional to the light intensityI , and not to its field strengthET . Given that

the intensityI is a quadratic function of the electric field strength (I ∝ |E2
T |), the harmonic

components of the background fieldEB inevitably appear mixed with the harmonics of the

near-field scatteringEN in the detector output. Because mixing yields pairwise products

of the near-field and background scattering coefficients, this occurrence of the background

signal will be referred to as themultiplicativebackground interference, also known as the

interferometric background effect [179].

Although the interference of the background and near-field signal harmonics cannot be

Zhe Fei
Highlight

Zhe Fei
Highlight

Zhe Fei
Highlight

Zhe Fei
Highlight



111 6.3 Multiplicative s-SNOM background

prevented, its influence on the outcome of the near-field signal measurement depends on

the actual signal detection technique used. In that regard,two simple detection techniques

will be analyzed first and demonstrated to be completely or partially susceptible to the near-

field−background interference. Pure near-field signals can be measured utilizing more

sophisticated detection techniques presented in Sect. 6.4.6.3.2 Non-interferometri detetion
The simplest near-field signal detection scheme uses just the light scattered by the probing

tip, which is collected and sent to the detector. Such a setup[43] is illustrated in Fig. 6.9.

Figure 6.9: Non-interferometric detection setup

The fieldED at the detector position in Fig. 6.9 is equal to the total scattered fieldET which

comprises the near-field and background components,EN andEB. SubstitutingEN andEB

from Eq. 6.27, we have

ED(t) = EN(t)+EB(t) = E0

∞

∑
n=−∞

einΩt(σN,n+σB,n). (6.28)

The detector output voltageu is proportional to the light intensity,u ∝ |E2
D|. The Fourier

series of the output voltageu is then

u =
∞

∑
n=−∞

einΩtun = ku

∣∣∣∣∣ ∞

∑
m=−∞

eimΩt(σN,m+σB,m)

∣∣∣∣∣
2

, (6.29)

with ku being a proportionality constant whose exact values thus depends on the applied
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laser power, detector responsivity, and the properties of the probing tip and the objective

used for the sample illumination and the collection of the scattered light.

To determine the expansion coefficientsun, the identity|Z|2 = ZZ∗ valid for anyZ∈C will

be applied to the sum on the left of Eq. 6.29. After expansion of the left side of Eq. 6.29, the

coefficients of all terms containing the complex exponential einΩt should be added together

to get the Fourier coefficientun. The terms proportional toeinΩt which corresponds to the

detector output at frequencynΩ can be obtained only from the pairwise products of the

form XmeimΩt Y∗l e−il Ωt , wherem− l = n andX,Y can be any ofσN,σB. There are four such

products for each givenn andm:

un = ku

∞

∑
m=−∞

σN,mσ∗
N,l +σN,mσ∗

B,l +σmσ∗
B,l +σB,mσ∗

N,l , (6.30)

with l = m−n. Where more convenient,σN,−l can be substituted forσN,l andσB,−l for

σB,l since bothEN andEB are even functions of time because the probe height variation is

given by the cosΩt term in Eq. 5.41.

From Fig. 6.5 one can infer that the terms containingσB,0 must be much larger than any

other term not containingσB,0 in Eq. 6.30. Neglecting all but the four terms involvingσB,0,

we get:

un ≈ ku( σB,0σ∗
B,n+σB,0σ∗

N,n+σN,nσ∗
B,0+σB,nσ∗

B,0 ). (6.31)

The complex scattering coefficientsσN,n andσB,n can be expanded into real-valued am-

plitude and phase components. If we in this sense substitutesneiϕn for σN,n andbneiψn for

σB,n, the complex conjugate operator just changes the sign of thephasesϕn andψn. This

way we obtain

un = kub0 [bnei(ψ0−ψn) +snei(ψ0−ϕn) +snei(ϕn−ψ0) +bnei(ψn−ψ0) ], (6.32)

which simplifies to [69]:

un = 2kub0 [bncos(ψn−ψ0)+sncos(ϕn−ψ0) ]. (6.33)

Taking advantage of the higher-harmonic demodulation, thebackground harmonic am-

plitude bn can be made much smaller than the near-field signal amplitudesn. So for a
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113 6.3 Multiplicative s-SNOM background

sufficiently high demodulation ordern, we get

un ≈ 2kub0sncos(ϕn−ψ0). (6.34)

From Eq. 6.34 we see that there is a multiplicative background contributionb0 = |σB,0| to

the detected signal, regardless of the demodulation ordern. For this reason, all background

artifacts described at the beginning of this chapter can still affect the measured signal even

if the detector output is demodulated at a higher harmonic ofthe probe vibration frequency

Ω.

However, there exists an important difference between the additive and the multiplicative

background interference which will be explained by example. To this end, let us assume

that the amplitude of the background scattering coefficientσB,0 has changed by 10% for

some reason. In the case of themultiplicativebackgroundb0 = |σB,0| in Eq. 6.34, the de-

tected signalun would change by the same amount (10%). Since the backgroundb0 is com-

pletely equivalent to the near-field signalsn in Eq. 6.34, the variation in the background can

be misinterpreted as the change in the near-field signal by the same amount, independent

of the harmonicn. In contrast, the same 10% change in theadditivebackground would in

general not cause an error in the measured near-field signal equal to 10%. Rather, it would

alter the square bracket in Eq. 6.33 by 0.1bn, meaning that the actual error depends on the

ratio ofsn to bn, i.e. the NFBR (Sect. 6.2.6). If we take the values from Fig. 6.5 to estimate

the ratiobn/sn for A = 20nm, we getb0/s0≈ 100 andb2/s2≈ 0.05. If the former (n = 0)

case, a 10% change in the background would be 10 times larger than the entire near-field

signals0, whereas in the latter (n = 2) case the change would amount to only about 0.5%

s2. We can thus conclude that when unsuppressed, the additive background can be much

more detrimental to the near-field microscopy than the multiplicative background.

However, there is another source of unreliability contained in Eq. 6.34. The cosine factor

cos(ϕn−ψ0) might change due to both the background phaseψ0 and the near-field phase

ϕn [69]. The background phase is an inherently unreliable quantity because it depends,

amongst other things, on the adjustment of the optical components which influence the

illumination profile. Moreover, all reflections from the sample surface and from the optical

elements such as lenses have the same effect on the detected signal as the unmodulated

background termσB,0. They can thus be simply added to it, making the exact relation

between the background phaseψ0 and the near-field phaseϕ0 even harder to predict and

control.
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6 Background-free Detection of Near-field Signals 114

Even if the background phase could be controlled by careful adjustment of the optical

components, the near-field phaseϕn would still be determined by the tip-sample interaction

and could therefore change, e.g., due to a near-field resonance. As a consequence of the

phase change, the amplitude of the detected signalun would be modified. Such coupling

between the near-field signal phase and the measured signal amplitude is undesirable since

it can lead to false conclusions about the strength of the near-field interaction. This topic

will be elaborated further in Sect. 6.5.6.3.3 Homodyne detetion
The shortcomings of the non-interferometric scattered light detection technique described

in Sect. 6.3.2 can be avoided to a large degree by performing an interferometric measure-

ment employing a well defined and controllable reference beam. As illustrated in Fig. 6.10,

the reference wave R interferes with the wave T scattered by the probing tip. Formally,

Figure 6.10: Homodyne signal detection

there is no difference between the reference and the background wave concerning the in-

terference with the near-field signal. We can thus easily extend Eq. 6.34 by adding the

interference term between the near-field scatteringEN and reference fieldER = E0 rReiψR:

un = 2kusn [b0cos(ϕn−ψ0)+ rR cos(ϕn−ψR) ] . (6.35)

For efficient suppression of the background termb0cos(ϕn−ψ0), it is necessary to have a

strong reference wave,rR≫ b0. If this is the case, the background term in Eq. 6.35 can be
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omitted, reducingun to

un = 2ku rRsn cos(ϕn−ψR) . (6.36)

After obtainingun, it was suggested in Ref. [45] to repeat the same measurementwith

the reference phase shifted by∆ψR = 90, marked as position B in Fig. 6.10. From this

measurement a second value is obtained,

wn = 2ku rRsn sin(ϕn−ψR) . (6.37)

Having both the sine and the cosine component of a given scattered field harmonic, both

its amplitude and phase can be reconstructed. This is most easily done by constructing the

complex quantity

Un = un+ iwn = 2ku rRsnei(ϕn−ψR). (6.38)

Un is thus proportional to the near-field scattering coefficient σn = sneiϕn, with the propor-

tionality equal tokh = 2kure−iψR. As already explained in Sect. 2.5, this constant needs not

be determined if relative measurements are performed.

The most important advantage of the homodyne detection technique over the non-interferometric

method is the decoupling of the signal amplitudesn from its phaseϕn. Owing to the in-

dependent recovery of the scattered field amplitude and phase, the homodyne method is

suitable for near-field spectroscopy of both strong and weakoscillators such as SiC[63]

and polystyrene[62, 64], respectively.

However, the amplitude and phase measurements by the homodyne method are only as ac-

curate as is the approximation made between Eq. 6.35 and Eq. 6.36. There it was assumed

that the background scattering is negligible with respect to the reference wave. In a typical

experiment, the reference wave gets reflected by a flat mirror(Fig. 6.10), with more than

95% efficiency. On the other hand, it was found that the probing tip returns only about

3-5% of the incident light intensity. The ratio of the reference and background wave in-

tensities is therefore close toIR : IB = 25. Although such ratio may seem large enough to

neglect the background, the background influence is actually much larger because it is the

field strength that enters Eq. 6.35, not the intensity. SinceER : EB is only about 5, the influ-

ence of the background scattering can have a noticeable impact on the measured near-field

scattering coefficient.

The influence of the multiplicative background interference on the results obtained using

the homodyne detection method can be estimated by comparingthe signal amplitudeUn

Zhe Fei
Rectangle

Zhe Fei
Rectangle

Zhe Fei
Rectangle

Zhe Fei
Highlight

Zhe Fei
Highlight

Zhe Fei
Highlight

Zhe Fei
Highlight

Zhe Fei
Highlight

Zhe Fei
Highlight

Zhe Fei
Highlight

Zhe Fei
Highlight



6 Background-free Detection of Near-field Signals 116

obtained from Eq. 6.38 with the background omitted to the signal amplitudeU ′
n obtained

with the background contribution included. The worst-caseappears when the background

and near-field signal phases are equal, i.e.ψ0 = ϕn. For this case the behavior ofU ′
n/Un as a

function of the reference phaseψR is shown in Fig. 6.11. The error made by reconstructing

the complex scattering signal amplitude via the Eq. 6.38 canbe read out directly from

Fig. 6.11. The maximum error in the measured amplitude of thenear-field contrastsn

amounts to over±28% and the error in its phaseϕn to about±16. Such a large error

significantly reduces the accuracy of the near-field contrast measurements.
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Figure 6.11: The ratio of complex signal amplitudesU ′
n andUn calculated with the back-

ground contribution included (Eq. 6.35) and omitted (Eq. 6.36), respectively.
Shown are (a) the amplitude and (b) the phase ofU ′

n/Un as functions of the
reference wave phaseψR for ψ0 = ϕn andER : EB = 5.

Although there exist reference phasesψR in Fig. 6.11 for which the amplitude error is zero,

and other phasesψR for which the phase error is zero, both errors can never be eliminated

simultaneously. It is also not possible to attenuate the background without affecting the

near-field signal because they both originate from the same spot (the probing tip). Although

attenuating them together does indeed increase the ratioER : EB, this comes at the cost of

the proportionally reduced near-field signal, which is highly unfavorable for achieving a

good signal-to-noise ratio. The complete elimination of the multiplicative background

therefore requires more sophisticated detection methods,presented in the next section.
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117 6.4 Background-free Detection of Scattered Light6.4 Bakground-free Detetion of Sattered Light6.4.1 Heterodyne detetion
The first detection method capable of a complete multiplicative background suppression

was the heterodyne method, introduced in [180] and [58]. It uses a reference wave of

a slightly different wavelength than the light used for probe illumination. The reference

must nevertheless be coherent with the illumination, and the difference in their wavelengths

must be very small compared to the wavelengths. Only under such conditions can an

interference between the scattered wave and the reference wave be observed. As illustrated

in Fig. 6.12(a), the required wavelength difference may be produced by an acousto-optic

modulator (AOM), exploiting the Doppler shift of light uponits diffraction by traveling

acoustic waves. The angular frequency shift∆ω of the light wave is thereby equal to the

angular frequency∆ of the acoustic waves, times the diffraction orderN (∆ω = N∆). This

is equivalent to a wavelength change of∆λ = λ∆ω/ω, which for a typical AOM frequency

∆≈ 100MHz and a wavelength of e.g.λ = 3µm, amounts to only one part in about 106.

In the heterodyne detection setup shown in Fig. 6.12(a), thesignal and the reference waves

are brought to interference by using a variant of the Mach-Zehnder interferometer. Just

like in the homodyne method, the near-field signal interferes with the background and

the reference wave. However, since the reference and the background now have different

frequencies, their interference with the near-field signalcan be distinguished from one an-

other. In particular, the frequencies∆± nΩ found in the detector output can only come

form the interference between the frequency-shifted reference wave and the scattered sig-

nal, as indicated in Fig. 6.12(b). This way the multiplicative background is avoided and the

remaining additive background found at frequencies∆±nΩ can be suppressed by choos-

ing n large enough [69, 181], i.e. by the higher-harmonic demodulation method described

in Sect. 6.2.

Formally, the detector output signal demodulated at a frequency∆ +nΩ can be expressed

as [58, 174]

Un = ku rRsnei(nψT−ϕn), (6.39)

whereψT is the phase difference between the mechanical oscillationof the probe and the

sinusoidal voltage driving the probe.

The expression for the demodulated detector output voltagein Eq. 6.39 is approximate only
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6 Background-free Detection of Near-field Signals 118

(a)

(b)

Figure 6.12: (a) Heterodyne detection setup from [58], and (b) the spectrum of the detector
output signal.

to the extent that the additive background has been neglected. In particular, the multiplica-

tive background is indeed completely eliminated by the heterodyne detection technique

because the signal is extracted at the frequency∆±nΩ which cannot be produced by the

interference of the near-field and background signals. The heterodyne technique can thus

achieve the highest degree of background suppression amongall three detection methods

presented so far. Consequently, the heterodyne method yields the most reliable near-field

images.

However, there are some practical disadvantages of the heterodyne method as shown in

Fig. 6.12. First of all, the phase ofUn depends on the phase of the probe vibration, which

can change depending on the mechanical interaction of the probe and the sample. Second,

AOMs typically operate in the VHF frequency range (30−300MHz), where the light de-

tectors typically provide a lower signal-to-noise ratio than in the sub-MHz range occupied
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by the near-field signal alone. Further, the frequency shifted beam at the output of the

AOM is separated from the undiffracted beam by only about tenmilliradians, requiring

an additional beam expander and making the setup less compact. Additionally, the output

angle of the frequency-shifted beam changes with the wavelength, so the setup must be

re-adjusted for each selected spectral line. The AOMs operating in the infrared are opaque

to visible light so the optical alignment is further hampered by the unavailability of a pilot

beam. Finally, the commercially available AOMs cover only alimited portion of the IR

spectral range.

Although some of the aforementioned problems can be avoided[182], this can only be

done at the expense of increased complexity and cost of the setup. In any case, the im-

plementation of the heterodyne method is a challenging task, especially for the infrared

spectroscopy applications. As a consequence, no successful spectroscopic near-field mea-

surement using the heterodyne technique has been reported so far.

In the next section, a simpler alternative to the heterodynemethod will be presented. It

provides the solution to all problems mentioned above whileretaining the same degree of

the background suppression.6.4.2 Pseudo-heterodyne detetion
A new method for background-free s-SNOM signal detection isintroduced in this sec-

tion. The method is based on the sinusoidal phase modulationof the reference wave and

provides a complete multiplicative background elimination and permits the simultaneous

measurement of the near-field signal amplitude and phase. Since the reference wave is

modulated and not shifted in frequency, this method is knownas the ”pseudo-heterodyne”

method [183]. Fig. 6.13(a) contains a schematic representation of the pseudo-heterodyne

setup as implemented in [173].

It is in essence a Michelson interferometer configuration and uses only one beam splitter

and a vibrating mirror. It is therefore much easier to implement than a heterodyne setup.

Also, the required components are readily available over the entire near-UV to far-IR spec-

tral range. Furthermore, the vibrating mirror can be drivenby piezoelectric actuators with

kHz frequencies and thus leave the useful signal in the sub-MHz range where light de-

tectors offer a higher signal-to-noise ratio compared to those required by the heterodyne

technique.
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6 Background-free Detection of Near-field Signals 120

(a)

(b)

Figure 6.13: (a) Pseudo-heterodyne detection setup, and (b) the schematic representation
of the corresponding detector output spectrum.

It now remains to be explained how the near-field signal is recovered by the pseudo-

heterodyne technique and how the background interference is thereby avoided. This can be

best done by analyzing the detector output spectrum, schematically shown in Fig. 6.13(b).

Such a spectrum is a result of the interference between the phase-modulated reference wave

field ER described by

ER = keρ eiγ cos(Mt), (6.40)

and the total scattered wave fieldET = EN +EB, described by Eq. 6.28,

ET(t) = E0

∞

∑
n=−∞

σT,neinΩt . (6.41)

The angular frequencyM in Eq. 6.40 denotes the reference wave phase modulation fre-

quency, and the angleγ stands for the phase modulation amplitude (also know as the phase
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modulation depth). The complex reference wave reflection coefficient ρ = rReiψR has a

magnituderR and also comprises the phase offsetψR that accounts for the average optical

path difference between reference and signal waves.

In order to calculate the amplitudes of the spectral components in the detector output, the

Fourier decomposition ofER must be known. The Fourier expansion coefficients of a

phase-modulated field were already encountered in Sect. 6.2, Eq. 6.9. In the same manner,

the coefficientsρm in the Fourier series of interest here,

ER =
∞

∑
m=−∞

ρneimMt, (6.42)

are equal to

ρm = rRJm(γ)ei ψR+imπ/2. (6.43)

It should be noted that the fundamental angular frequencyM involved in the Fourier expan-

sion ofER in Eq. 6.42 must be different from the frequencyΩ in Eq. 6.41. The interference

of the two fieldsET andER then yields signal at frequenciesνn,m = nΩ +mM. If the ref-

erence wave modulation frequencyM is thereby lower than the tip vibration frequencyΩ,

each of the scattered signal harmonics with frequenciesnΩ, n > 0 splits into sidebands

containing frequenciesνn,m = nΩ+mM, depicted in Fig. 6.13(b).

In contrast, the detector output spectrum with no referencewave contains only exact mul-

tiples nΩ of the probing tip vibration frequency. Those are the frequencies where the

multiplicative interference between the near-field and background signal is found. With

the phase-modulated reference, the multiplicative background still appears at the same fre-

quenciesνn,0 = nΩ, but not at the sideband frequenciesνn,m = nΩ + mM, n,m 6= 0. By

extracting the signal from the sidebands which contain the doubly-modulated signal, the

multiplicative background interference is thus completely avoided. This is in a full anal-

ogy with the heterodyne method, where the same effect is achieved by demodulating the

detector output signal at frequenciesνn = ∆+nΩ.

In addition to the elimination of the multiplicative background interference, the pseudo-

heterodyne approach also enables the simultaneous measurement of both amplitude and

phase of the scattered field’s harmonics. This can be done by combining the measured sig-

nal at two frequenciesνn,m andνn,l wherem is an even andl an odd integer. To demonstrate

this, let us first derive the amplitudeun,m of the detected signal at a frequencyνn6=0,m6=0.

Quite generally, the detector outputu is given by the intensity of the light resulting from
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the interference between the scattered fieldET and the reference fieldER:

u = ku|ET +ER|2 = ku

∣∣∣∣∣ ∞

∑
n=−∞

σT,neinΩt +
∞

∑
m=−∞

ρmeimMt

∣∣∣∣∣
2

. (6.44)

The detector output amplitudeun,m demodulated at a frequencyνn,m = nΩ +mM is com-

prised of the complex coefficientscn,m found in terms of the formcn,mei(nΩ+mM)t obtained

after expanding the left side of Eq. 6.44. With the aid of the identity |Z|2 = Z Z∗ we see

that the coefficientscn,m can only be the products of the formσT,nρ∗−m or σ∗
T,−nρm. Since

bothET andER are even functions of time, we can writeσ∗
T,−n = σ∗

T,n andρ∗−n = ρ∗n . The

detected signal amplitudeun,m at the frequencyνn6=0,m6=0 is thus equal to

un,m = ku(σT,nρ∗m+σ∗
T,nρm), (6.45)

Substitutingρm from Eq. 6.43 and expressing the complex coefficientσT,n asσT,n = st,neiϕt,n

we obtain

un,m = 2kurRJm(γ)st,ncos(ϕt,n−ψR−mπ/2). (6.46)

From Eq. 6.46 it is clear that the successive lines in a sideband are in alternation propor-

tional to the real part (cos) and imaginary part (sin) of the complex Fourier coefficient

τn. In particular, the real part is obtained for evenm, and the imaginary part for oddm.

Consequently, the complex scattering coefficientσT,n can be recovered from two signal

amplitudesun,m andun,l as

σT,n = kp(
un,m

Jm(γ)
+ i

un,l

Jl(γ)
), (6.47)

wherekp = eiψR

2ku rR
andm 6= 0 is an even andl an odd integer.

Eq. 6.47 simplifies even further ifJm(γ) is made equal toJl (γ) by a suitable choice of the

modulation depthγ. For l = 1 andm= 2, the required modulation depth obtained from

J1(γ) = J2(γ) is γ12=2.63. In the experiment, such modulation can be obtained byvibrating

the reference mirror with an amplitude∆lR= γ12
2

λ
2π ≈0.21λ . The scattering coefficientσT,n

is in this case just

σT,n =
kp

J1(γ12)
(un,2+ iun,1). (6.48)

As already explained is Sect. 2.5, the value of the constantku contained inkp needs not
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be determined for relative contrast measurements usually performed in the near-field mi-

croscopy. It is sufficient to consider just the complex amplitudeUn ∝ σT,n of the detector

output signal, defined as

Un = un,2+ iun,1. (6.49)

As long as the experimental conditions are kept constant, the proportionality constant be-

tweenUn andσT,n remains unchanged. Finally, taking advantage of the higher-harmonic

demodulation, the background contributionσB,n to the overall scattering coefficientσT,n

can be made negligibly small. In that case we haveσT,n = σN,n +σB,n ≈ σN,n, so that the

measured complex amplitudeUn is proportional to the pure near-field scattering coefficient

σN,n. The desired near-field scattering coefficient amplitudesn is then proportional to the

modulus ofUn, and the phaseϕn is equal to the argument of the complex valueUn.6.5 Experimental Comparison of DetetionTehniques
After the theoretical presentation of the known s-SNOM detection methods, in the follow-

ing it will be experimentally demonstrated that the pseudo-heterodyne method succeeds

in a complete multiplicative background elimination, whereas the non-interferometric and

homodyne interferometric detection schemes do not. For convenience, the schematic illus-

tration of the three detection techniques is provided in thetop row of Fig. 6.14. The bottom

row of Fig. 6.14 contains the corresponding detector outputspectra in the vicinity of the

probe vibration frequencyΩ, recorded in the absence of the sample. The frequencyΩ was

equal to about 30kHz and the reference wave modulation frequencyM was set to 400Hz.

The doubly modulated signal resulting from the interference between the background and

the reference wave was measured by a MCT photodetector (Kolmar Technologies model

KMPV-0.2-J1/AC) which had its maximum responsivity aroundthe wavelengthλ ≈10µm,

emitted by the tunable CO2 laser used in this experiment. The experimental spectra shown

in the bottom row of Fig. 6.14 were calculated via the Fouriertransform of the recorded

photodetector output voltage.

The experimental spectra for each of the three detection methods in Fig. 6.14 nicely con-

firm the theoretical predictions from the preceding two sections. In particular, we see that

the non-interferometric method and the homodyne method yield signal in the detector out-
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(a) (b) (c)

Figure 6.14: Example signal spectrum obtained using different detection methods: (a) non-
interferometric intensity detection, (b) homodyne interferometric detection,
and (c) pseudo-heterodyne interferometric detection.

put only at the exact multiples of the frequencyΩ, marked by squares in Fig. 6.14(a) and

(b). In the case of non-interferometric detection, this signal is the interference product of

the scattered field componentET,n and the background field componentEB,0. With ho-

modyne detection, the detector output signal at the frequency nΩ is a superposition of the

interference between the scattered field componentET,n and both the reference fieldER and

background scattering fieldEB,0 (cf. Eq. 6.35). UnlessER≫ EB,0, the homodyne measure-

ment of the scattering signal thus incorporates a systematic error, investigated in Sect. 6.3.

The experimental manifestation of this effect is shown in Fig. 6.15(c) and described later

in this section.

With the pseudo-heterodyne method, the near-field signal isreconstructed from two differ-

ent frequencies,nΩ +1M andnΩ +2M. These two frequencies are marked by rectangles

in Fig. 6.14(c) and (a). From the part (a) it is evident that nosignal is present at those two

frequencies when a non-interferometric measurement is performed, apart from the noise.

The multiplicative background can therefore not affect thepseudo-heterodyne measure-

ments since it appears only at frequenciesnΩ, not used for signal reconstruction with the

pseudo-heterodyne technique.

To demonstrate the impact of the multiplicative backgroundon the s-SNOM images, a SiC
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sample exhibiting a sharp structural transition from 4H to 6H crystal structure is imaged

utilizing all three detection methods described above. This sample was chosen because it

simultaneously provides a moderate contrast both in the amplitude and the phase of the

near-field signal. This contrast is caused by slightly different dielectric properties of the

4H and 6H SiC polytypes. Measured atλ = 10.63µm, it amounts to about 20% in the

amplitudes2 and 30° in the phaseϕ2[67]. A more detailed examination of the near-field

spectra obtained with the same sample is presented in Sect. 7.5.

Fig. 6.15(d) shows an image of the 4H-6H SiC polytype transition obtained by the pseudo-

heterodyne method with three different reference phasesψR in sequence, designated as A,

B, and C. The total change in the reference phaseψR from A to C was about 180° and was

achieved by applying a voltage offset to the piezoelectric actuator driving the reference

mirror. Apart from the reference phaseψR, all other settings were left unchanged. Since

neither the amplitude nor the phase contrast between the SiCpolytypes changes asψR is

varied in Fig. 6.15(d), this experiment provides evidence that the multiplicative background

interference has indeed been successfully eliminated.

Figure 6.15: (a) Topography of a 6H-4H SiC polytype transition, exhibiting a≈ 2nm height
step generated in the process of sample surface polishing due to different hard-
ness of 4H and 6H SiC polytypes. (b-d) Second-harmonic optical signal from
the same sample obtained by (b) the non-interferometric, (c) homodyne and
(d) pseudo-heterodyne signal detection techniques.

When this is not the case, an image like Fig. 6.15(c) may be obtained. It contains the same
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SiC polytype transition, but imaged using the homodyne detection. The experiment was

performed under the same conditions as before, except for the vibrating mirror which was

replaced by a stationary one. To obtain the cosine and the sine components of the measured

signal harmonic, each line was scanned twice, with∆l = λ/8 shift of the reference mirror

between the two passes. With three different initial reference phase offsetsψR in sequence

(Fig. 6.15(c), parts A-C), three different amplitude and phase contrast between the 4H and

6H SiC polytypes are obtained. Furthermore, the contrast variation turns out to be strong

enough to cause even a slight contrast inversion in part A.

Finally, the non-interferometric detection was performedin the same setup. To this end,

the reference beam was simply blocked. Although the measurement was performed under

the same conditions as before, the resulting image of the same sample area, Fig. 6.15(b) dis-

plays an inverse amplitude contrast between the two SiC polytypes compared to Fig. 6.15(d).

The origin of such contrast inversion should be sought in theEq. 6.34. It contains the co-

sine factor cos(ϕn−ψ0) which translated the phase difference into the amplitude contrast

so that no definite conclusion about the near-field signal canbe reached based on such

measurements.

In conclusion, we have seen that the non-interferometric detection method is not suitable

for near-field microscopy of samples exhibiting variationsin the near-field signal phase.

The homodyne method is significantly better in that regard and is in fact able to measure

distinct optical resonances as shown in [63] and [64]. Still, the homodyne method is not

sufficient for near-field imaging of weak optical contrasts.Such contrast may arise from

e.g. structural differences between isomers or polytypes of the same material, or from

different materials with closely separated resonances. For such application, the pseudo-

heterodyne method should be used since it succeeds in a complete multiplicative back-

ground suppression. Furthermore, the pseudo-heterodyne method enables simultaneous

measurement of the near-field signal amplitude and phase, thus reducing the image ac-

quisition time by a factor two compared to the homodyne method. In comparison with

the heterodyne s-SNOM, the phase-modulation technique provides the advantage of sim-

pler and more compact experimental realization together with the applicability in a much

broader spectral range.
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7.1 Introdution
Infrared spectroscopy is a powerful technique for determination of the chemical and struc-

tural composition of various organic and inorganic materials based on their spectral ”finger-

prints”. Infrared spectral fingerprints reflect the energies of vibrational modes in molecules

and crystals which are highly specific for the given material. The energies of vibrational

modes mostly lie in the 30meV - 400meV range, coinciding roughly with the mid-infrared

spectral region (about 2.5µm to 30µm).

In order for a given vibrational mode to be observable in infrared spectroscopy, the cor-

responding chemical bond must possess at least partially polar character. If this condition

is satisfied, photons with energy close to the eigenfrequency of such vibrational mode are

efficiently absorbed, and a minimum in transmission throughthe sample occurs. Formally,

this effect can be described by an increase in the extinctioncoefficientκ = im(
√

ε), where

ε is the dielectric function of the material. The Lorentz oscillator model in the form of

Eq. 3.11 can be successfully applied to predict the behaviorof the dielectric functionε
around the vibration mode eigenfrequency provided the oscillator strengthf and damping

γ are known.

Particularly interesting is the case of polar crystals whose lattice vibrations couple to the

light so strongly that the dielectric functionε turns negative in a limited frequency range

above the eigenfrequencyω0, as shown in Fig. 3.1(a). This region, known as the residual

or Reststrahlenband, is bounded by the transverse and the longitudinal optical phonon

frequencies defined in Sect. 3.3. Within the Reststrahlen band, the reflection coefficient
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rp = (
√

ε −1)/(
√

ε +1) is close to unity and almost all light is reflected from the sample

as shown in Fig. 7.1(a).
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Figure 7.1: (a) Far-field reflection coefficientrp = (
√

ε −1)/(
√

ε +1) of p-polarized EM
waves normally incident on a SiC crystal. (b) Near-field signal σN emitted by
an s-SNOM probing tip in contact with SiC crystal surface, normalized to the
near-field signalσN on an Au surface.

Note that Fig. 7.1(a) applies only to the reflection of propagating waves under normal inci-

dence. In Sect. 5.2 it was shown that the near-field interaction between a s-SNOM probing

tip and the sample is mediated by evanescent waves which reflect with a different reflec-

tion coefficientβ = (ε−1)/(ε +1). The mutual interaction between the tip and the sample

finally results in a scattered light spectrum like the one shown in Fig. 7.1(b), calculated ac-

cording to Eq. 5.29.

A prominent feature of Fig. 7.1(b) is the sharp peak within the Reststrahlen band. In

Sect. 3.2, it was argued that such behavior should be traced back to the resonant excitation

of surface phonon polaritons. From Fig. 7.1(b), we can conclude that the near-field phonon-

polariton resonance is much sharper than the far-field Reststrahlen band which comprises

it. Considering in addition the huge improvement in the resolution compared to the far-field

IR spectroscopy [45, 62], near-field infrared spectroscopyclearly represents a very sensi-

tive technique for material identification. In that regard,it has already been shown that the

infrared s-SNOM can identify materials exhibiting near-field phonon-polariton resonances

[63]. Furthermore, even in the absence of a polariton resonance, s-SNOM can distinguish

and identify materials based on their IR absorption lines, as demonstrated for two polymers

in a blend [46] and single viruses [65].

In each of the above cases, the material identification was performed by recording the

near-field spectrum of the sample and comparing it to the theoretical prediction. In the
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following, it will be shown that the same procedure can be applied to differentiate be-

tween crystals of the same chemical composition but different crystal structure. Although

near-field optical contrasts due to differences in crystal structure are rather weak, the re-

quired degree of sensitivity can be achieved by exploiting the phonon-polariton near-field

resonance. This enables the crystal quality degradation due to radiation damage to be mea-

sured and the polytypes of the same material to be distinguished and identified by s-SNOM.

The former can be done in a quantitative way by using the monopole model introduced in

Chapter 5, and the latter additionally requires the use of the pseudo-heterodyne detection

method from Sect. 6.4.2 in order for the measured optical contrasts to be reproducible.

The application of s-SNOM for crystal quality mapping and polytype identification will be

demonstrated for SiC crystals. The primary reason for performing the experiments with

SiC is its phonon-polariton resonance aroundλ = 10.75µm, lying within the wavelength

range covered by tunable CO2 lasers. This greatly facilitates the experiments since CO2

lasers represent the most powerful and reliable sources of coherent mid-IR radiation. Be-

side the experimental convenience, SiC is on its own a prospective material for high-power

and high-temperature electronic applications[184]. A brief survey of its most important

properties will thus be presented first.7.2 Properties of SiC7.2.1 Eletri Properties
SiC is an exceptional semiconducting material able to retain its semiconducting behav-

ior even at temperatures above 500°C [185]. This characteristic is a consequence of

the wide bandgap of SiC (≈ 3eV) and the resulting low intrinsic carrier concentration

(∼ 10−6cm−1). Combined with the high breakdown field (> 3MV/cm) and excellent ther-

mal conductivity (≈ 5 W/cmK), this property permits SiC to sustain large power densities

[186]. The high breakdown field and the wide energy bandgap ofSiC enable much faster

power switching than in silicon power-switching devices with an equivalent power rating

[187]. Finally, all aforementioned characteristics together give SiC an additional advantage

over Si when applied in high-power radio-frequency (RF) signal generation and amplifica-

tion.

However, the huge application potential of SiC still remains unexplored because of the
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several difficulties encountered with SiC electronic devices fabrication. One of the main

obstacles, the poor quality and high price of SiC wafers, might have been recently resolved

by a new ”repeatedα-face” (RAF) SiC crystal growth method [188]. Still, the insulating

oxide layer on SiC needed to fabricate MOSFET devices is known to be thermally unsta-

ble and of unreliable insulation properties. This obstaclecan be avoided e.g. by using

the Metal-Semiconductor Field Effect Transistor (MESFET)design [186, 189] which does

not require an insulating oxide layer and also allows for a faster operation than MOSFET.

Finally, the contacting and other supporting electronic elements which can withstand high

operating temperatures of SiC are being steadily improved.The ongoing efforts to de-

velop and optimize SiC electronic devices can therefore benefit from an analytical tool that

enables non-destructive high-resolution imaging of crystal structure and doping profiles.7.2.2 Polytypism
SiC properties such as energy gap or intrinsic carrier concentration mentioned above may

significantly differ from crystal to crystal depending on their exact structure. Apart from

the possible defects in the crystal lattice, there exist variations in the structure of perfect

SiC crystals due to different stacking sequence of layers along one direction in space. The

freedom in the stacking order is a consequence of the fact that for each 2-D layer of densely

packed spheres designated by A in Fig. 7.2, there are two possible arrangements of densely

packed spheres on top of layer A. These two arrangements are labeled B and C in Fig. 7.2.
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Figure 7.2: Two possible arrangements B and C of closely packed sphere layers on top of
the layer A.

All crystals with the same stacking sequence, i.e. with the same ordering of layers A, B,

and C, belong to the samepolytype. More than 200 SiC polytypes are known, of which

the most common ones are the cubic polytype 3C, hexagonal polytypes 2H, 4H, 6H and
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rhombohedral polytype 15R. Stacking sequences of the first four of them are illustrated in

Fig. 7.3 which displays the cross-sections through the crystallographic(112̄0) plane. This

plane is defined by the c-axis of the crystal and the base line delineated in Fig. 7.4.
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Figure 7.3: Stacking sequence of Si-C layers in the most frequently encountered SiC poly-
types. Shown are cross-section along the crystallographic(112̄0) plane with
the base line designated in Fig. 7.4 below. Larger circles represent Si atoms,
smaller disks stand for C atoms.
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Figure 7.4: Projection of atom positions onto the(0001) plane in layers denoted by A, B,
and C in Figs. 7.2 and 7.3. Full lines are the crystallographic axes, and the
dashed line represents the base line of cross-sections shown in 7.3.

Properties relevant for electronic applications are givenin Table 7.1 below for the three

technically most interesting SiC polytypes: 3C, 4H and 6H. For comparison, corresponding

properties of Si are also given in the same table.
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3C-SiC 4H-SiC 6H-SiC Si

Bandgap (eV) 2.4 3.26 3.03 1.12
Breakdown field (MV/cm) >1.5 3.0 3.2 0.3

Thermal conductivity (W/cmK) 3.2 4.9 4.9 1.3
Intrinsic carrier concentration (cm−3) 5×10−9 5×10−9 10−6 1010

Electron mobility (cm2/Vs) 800 ‖c: 900 ‖c: 60 1430
⊥c: 800 ⊥c: 400

Hole mobility (cm2/Vs) 40 115 90 480
Saturated electron velocity (107cm/s) 2.5 2 2 1

Table 7.1: Comparison of electrical properties of SiC and Siat T = 300K.7.2.3 Anisotropy
Regarding the optical properties of SiC, it should be noted that all SiC polytypes with

the exception of the cubic 3C polytype are anisotropic. The 4H and 6H polytypes of SiC

presented here are both uniaxial like many other technically relevant crystals including e.g.

silicon. This enables the formalism from Sect. 5.3 to be applied here. Fig. 7.5 shows the

difference between the cuts perpendicular and parallel to the c-axis, calculated for a 4H-

SiC crystal using the monopole model (Eq. 5.29) with the respective near-field reflection

coefficientsβ⊥ and β‖ given by Eqs. 5.37 and 5.39. A slight resonance shift of about

2cm−1 is noticeable both for the DC signal and the signal demodulated at the second

harmonic (2Ω).
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Figure 7.5: Near-field signal from a 4H-SiC crystal cut perpendicular to the c-axis (full
line) and parallel to c-axis (dashed line), calculated according to the monopole
model. Shown are (a) the signal emitted by a stationary s-SNOM probing tip in
contact with SiC crystal, and (b) the second-harmonic demodulated signal from
a vibrating tip (b). The values are normalized to the equivalent signal above an
Au surface.



133 7.3 Structural Contrasts in Ion-Implanted SiC

According to the theoretical prediction in Fig. 7.5, the signal level in the resonance max-

imum does not depend on the cut direction. Given that the anisotropy was treated only

approximately here, it is possible that a more complete investigation will yield different

results. No experimental data exists in this regard, so the effects of anisotropy on the

near-field signal obviously require a more systematic investigation in the future. In the

remainder of this chapter only crystals cut perpendicular to the c-axis will be compared,

thus avoiding the possible scattering signal variations due to different orientations.7.3 Strutural Contrasts in Ion-Implanted SiC7.3.1 Ion Implantation in SiC
The study of the near-field contrasts arising from differences in the crystal structure re-

quires a modification of the structure to be performed without influencing the chemical

composition of the sample. One possible way to achieve such structural modifications is

to damage the crystal by highly energetic ions impinging on the surface of the crystal. The

ions cannot be stopped immediately at the point of impact with the surface of the crystal,

but they gradually lose their energy in a series of collisions with the lattice. Thereby the

atoms in the crystal lattice can be displaced from their initial positions, developing point

defects in the lattice. Since the incoming ions can be scattered in random directions after

each impact, the distribution of ion end positions is quite complex. In general, random

deviations of ion trajectories from a straight line in the crystal are known as straggling.

The average final position of implanted ions strongly depends on the ion mass and energy,

with lighter and faster ions exhibiting larger straggling [190]. If the ions are light and fast

enough, they are eventually stopped far below the surface. However, the damage to the

crystal lattice close to the surface still remains as the consequence of the implantation, of-

fering the possibility to investigate the effects of degrading crystal quality on the near-field

signal without a change in the chemical composition of the material.

In the experiment presented here, Be2+ ions with an energy of 60keV were used to achieve

the desired effect. The implantation was performed in a focused ion beam facility by R.

Wernhardt at the Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik.

The expected distribution of Be ions upon implantation in SiC was calculated using SRIM

software (Stopping and Range of Ions in Matter, [191]), giving an average depth of stopped
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Be ionsZ̄ = 300nm and the average straggle∆Z = 100nm. Monte-Carlo-type simulations

of the same experiment using the TRIM code [191] yield similar results, withZ̄ = 275nm

and∆Z = 75nm. The calculated concentration of Be ions as a function of the depth below

the SiC crystal surface is shown in Fig. 7.6.
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Figure 7.6: TRIM-calculated concentration of implanted 60keV Be2+ ions as a function of
depth below the SiC crystal surface.

Given the total Be2+ ion dose of 1015cm−2, the concentration of Be atoms within the first

100nm below the surface amounts to only about 60 Be atoms per million Si and C atoms

according to the TRIM simulation, and is thus negligible. Asa consequence, any near-field

optical contrast observed between the implanted and unimplanted areas of the crystal can

be attributed with high certainty to the differences in the crystal structure, and not to the

chemical composition of the material.7.3.2 Near-�eld Infrared Images of FIB-Patterned SiC
The focused ion beam (FIB) implantation allows arbitrary implantation patterns to be re-

alized on the surface of the crystal. This feature was exploited to facilitate the comparison

between the near-field response if the ion-beam damaged and intact SiC crystal. For this

purpose, the pattern shown in Fig. 7.7 was ”drawn” on the surface of a 6H-SiC crystal cut

perpendicular to itsc-axis and polished prior to the FIB implantation. The FIB-patterned

crystal was then imaged in a s-SNOM, using the homodyne setupdescribed in Sect. 6.3.3.

A Ti-Pt-coated probing tip (MikroMasch, model CSC37/Ti-Pt) with the resonance fre-

quency of aboutΩ = 30kHz was used in the experiment. The tip radius was specifiedby

manufacturer to be aboutR= 35nm, and the tapping amplitude was set toA= 25nm. Since

s-SNOM is based on the atomic force microscope (AFM), it enables the sample topography
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to be recorded simultaneously with the optical scattering signal. The information provided

by s-SNOM optical and mechanical channels will be now compared before proceeding to

the near-field infrared spectra.

Figure 7.7: Pattern created in 6H-SiC crystal by focused ionbeam implantation of 60keV
Be2+ ions. The area imaged in the experiment is delineated by the black rect-
angle.

The experimentally obtained topography image of the FIB-patterned SiC surface is shown

in Fig. 7.8(a). Obviously, the topography image reveals little information apart from the

10-20 nm deep scratches produced in the process of crystal surface polishing. A slight cor-

relation between Fig. 7.7 and Fig. 7.8(a) is a consequence ofmaterial expansion (swelling,

[192]) due to increased disorder in the crystal. However, the height variations due to

swelling would be hard to notice without looking at the implantation pattern (Fig. 7.7),

and the transition between the implanted and unimplanted areas is so blurry that the small

implanted squares are not recognizable at all. The mechanical phase, shown in Fig. 7.8(b)

reveals just the polishing scratches, thus providing even less information than the topogra-

phy.

Fig. 7.9 contains the simultaneously recorded optical image obtained by demodulating the

detector output signal at the second harmonic of the tappingfrequency (2Ω ≈ 60kHz)

obtained with the CO2 laser tuned to the wavelengthλ = 925cm−1. From Fig. 7.9 it is clear

that the optical signal reveals much more information than the topography. Especially the

amplitude image in Fig. 7.9(a) reveals every detail of the implanted structure from Fig. 7.7.

The optical phase image in Fig. 7.9(b) also resembles the implanted pattern, but the contrast

is much weaker and less clear than in the case of the optical signal amplitude. Interestingly,
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(a) (b)

Figure 7.8: Height (a) and tip vibration phase (b) image of the FIB-patterned SiC. Image
size: 6µm×6µm

exactly the opposite situation is found in the optical amplitude and phase images at another

wavelength,λ = 899cm−1, as shown in Fig. 7.10.

The reason for this behavior of the scattering signal as wellas the appearance of bright

edges in the phase image in Fig. 7.10(b) will become clear when the complete near-field

spectra are examined in the next section.7.3.3 Near-�eld Spetra of Ion-implanted SiC
The complete near-field signal spectra will be extracted at four different positions marked

as A,B,C and D in Fig. 7.11. These four positions comprise twounexposed areas (A and

B) and two areas exposed to the ion beam (C and D). However, each of the four areas

has received a different effective implantation dose, as can be concluded from the different

amplitudes of the signal in Fig. 7.9(a) at each of the positions A-D. The origin of this

difference is explained below.

Starting with the area D, we can assume it has received a full dose of 1015cm−2. However,

this dose consists of the ions which hit the SiC surface within the region D as well as

those which hit the surrounding area but recoil into D. According to the TRIM simulation,

the average lateral straggle∆X of 60 keV Be2+ ions normally incident on a SiC surface

is about 90nm, with significant number of ions stopped at a lateral distances as large as

X = 250nm away from the entry point. In addition, a focused ion beam necessarily contains

ions incident under a range of angles around the normal whichcontributes to an even larger
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(a) (b)

Figure 7.9: Near-field optical images of focused-ion-beam patterned SiC. Shown are
the demodulated second harmonic signal amplitudes2 (a) and phaseϕ2 (b)
recorded atω = 925cm−1.

lateral straggle. Finally, the ion beam focus has a Gaussianprofile with a finite width, not

guaranteed to be better than 200nm FWHM in this experiment [193]. All this effects

average out on a large implanted surface like the area D, but not in an area like C which is

surrounded by unimplanted regions. The damage induced by ion implantation in the region

C is thus lower than in the region D.

Since there is an amount of ions ”missing” in the region C, it obviously ended up in the

surrounding regions similar to the one marked by B. For this reason, the region B accumu-

lated some damage from the ions targeted at the region C and its response will differ from

the completely unimplanted SiC. Of the four marked regions,only the region A is far away

from any implanted regions and can be assumed to be free of thedamage to the crystal

structure.

One important consequence of the above effects are blurred edges of both large and small

squares in Figs. 7.9 and 7.10. In Sect. 7.6 it will be proved this is indeed a consequence

of the implantation process and not the s-SNOM resolution limit since under different
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(a) (b)

Figure 7.10: Near-field optical images recorded atω = 899cm−1. Shown are the demodu-
lated second harmonic signal amplitudes2 (a) and phaseϕ2 (b) .
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Figure 7.11: Scanned area of the implanted pattern from Fig.7.7 with marked areas A-D
where the near-field spectra are extracted.

implantation conditions much sharper edges can be achieved.

Before the spectra can be assembled from single scans, they have to be normalized to a

signal on a reference material (see Sect. 2.5.1). Since no reference material was available in
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the scanned region, the normalization had to be performed intwo steps. First, the spectrum

of unimplanted SiC was obtained from a separate measurementon the same crystal but at

a different location, close to a 50nm thick Au film. The so-obtained spectrum was then

taken as the normalized spectrum of the unimplanted SiC in the region A. The signal in

other areas (marked B-D) was then scaled at each wavelength,so that their ratios to the

signal in the area A remain the same as measured in the experiment. The final result is

shown in Fig. 7.12.
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Figure 7.12: Second-harmonic near-field spectra of SiC sample with different Be2+ im-
plantation doses A-D.

From Fig. 7.12 we see that the magnitude of the near-field resonance diminishes rapidly

with the damage to the crystal lattice. A shift of the resonance maximum to lower fre-

quencies with the increasing ion dose seems to take place as well, but it cannot be di-

rectly observed due to the missing CO2 laser lines in the range betweenω = 905cm−1 and

ω = 920cm−1.
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The phase spectra in Fig. 7.12(b) exhibit a decreasing slopeas the implantation dose in-

creases. This is an indication of broader and less pronounced resonances, consistent with

the conclusions drawn from the amplitude spectra. The most heavily implanted region

(D) has the highest phaseϕ2,D aroundω = 900cm−1. Due to its broad resonance, the

total phase rotation in the region D is the lowest of all investigated regions so the signal

in the region D has the lowest phase atω = 940cm−1. The crossing with the phaseϕ2,A

of the unimplanted region A occurs around the unimplanted SiC resonance maximum at

ω = 925cm−1, thus explaining the large amplitude, but small phase contrast in Fig. 7.9.

The phase signalϕ2,C of the small implanted squared (region C) crossesϕ2,A at a different

wavelength (ω ≈ 930cm−1), so it does not lie between the phasesϕ2,D andϕ2,A in the

frequency region betweenω ≈ 920cm−1 andω ≈ 930cm−1. This explains the appearance

of bright edges in the phase image in Fig. 7.10(b).7.4 Quantitative Determination of SiC CrystalQuality
The spectra in Fig. 7.12 display a clear trend towards a broader and weaker resonance as

the damage to the crystal lattice increases. It is thereforeobvious that there is a correlation

between the near-field spectra and the structure of the crystal. To express this relationship

in a quantitative way, a theoretical model capable of reproducing the measured values

sufficiently well is required. This was the principal motivation for deriving the monopole

model in Chapter 5. The monopole model in the form of Eq. 5.34 will be employed here to

determine the structural composition of SiC most consistent with the observed near-field

spectra in the regions A-D.7.4.1 E�etive Medium Approximation
As the first step towards a quantitative statement about the ion-implantation damage in

SiC, the amount of damage needs to be related to the dielectric function of the material.

In general, a composite medium made of two different materials can be considered as

a homogeneous material for the purposes of far-field spectroscopy if its components are

mixed on the scale much smaller than the wavelength. In the context of s-SNOM, the field

is confined to a volumeV roughly equal to a half-sphere of radius equal to the probing
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tip radiusR, V ≈ 2/3πR3. The volumeV represents a rough upper bound to the volume

over which the material components have to be homogeneouslymixed. The damage due

to the ion implantation is limited to dimension on the order of 1nm and is smaller than

the probing volume radius (20-30 nm). This enables a single dielectric constantε to be

assigned to the entire volume of the material within the probing radius. Such an approach

is generally known as the effective medium approximation (EMA). The dielectric function

of such effective medium must lie between the Wiener bounds given by

εNS= x1 ε1+x2 ε2 (7.1)

and

εFS =
(

x1

ε1
+

x2

ε2

)−1

, (7.2)

wherex1 andx2 = (1− x1) are the volume fractions of the two compounds andε1 and

ε2 their respective dielectric functions. The first bound,εNS, applies to the case of no

screening (NS), e.g. lamellae of material 1 and material 2 lying parallel to the direction

of light propagation. The second bound,εFS, applies to the case of full screening (FS),

realized e.g. by lamellae of the two materials lying perpendicular to the direction of light

propagation.

More sophisticated models like the Bruggeman EMA [194] result in values for effectiveε
closer to the limit of no screening,εNS, than to the full screening,εFS. In addition, mea-

surements of the far-field transmission and reflection spectra of ion-implanted SiC [195]

seem to be consistent with the dielectric function given by Eq. 7.1. For this reason, the use

of an expression more complicated than Eq. 7.1 would not be justified here.

The two components whose dielectric functions enter Eq. 7.1still need to be determined. It

might seem obvious that they comprise the initial and final stages of the implantation pro-

cess, i.e. the purely crystalline and the purely amorphous SiC. However, an ion transferring

its kinetic energy to the SiC crystal lattice does not cause its immediate amorphization. In-

stead, point defects such as vacancies and interstitials are first produced. These defects

increase the imperfection of the lattice and therewith the phonon-polariton damping, rep-

resented by the damping coefficientγ. This suggests the dielectric function of the form

ε(ω) = xεaSiC(ω)+(1−x)εcSiC(γ,ω), (7.3)
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where the parametersγ and x should be adjusted until the best fit to the experiment is

obtained. The parameterγ is thereby the damping coefficient of the damaged but still

crystalline SiC (c-SiC), while the parameterx signifies the fraction of the amorphous SiC

(a-SiC) material in the total volume.7.4.2 Damping and Amorphization
With the aid of Eq. 7.3, ion-implantation damage to SiC can beexpressed in terms of

amorphization degreex and damping coefficientγ. Both of these parameters are known for

the unimplanted region A. In particular,x = 0, and the damping coefficient of high-quality

crystalline SiC isγ = 6±1cm−1.

To be able to reproduce the unimplanted SiC spectrum (A) using Eqs. 5.44 and 5.24, optical

constants determining the dielectric function of SiC are required. According to [78], the

6H-SiC crystal used in this experiment can be described by the transverse and longitudinal

optical phonon frequenciesωTO,‖ = 788cm−1 andωLO,‖ = 964cm−1 parallel to the c-axis,

andωTO,⊥ = 797cm−1 andωLO,⊥ = 970cm−1 perpendicular to the c-axis. Finally, the

dielectric functions are obtained from Eq. 3.11 withε∞,‖ = 6.72 andε∞,⊥ = 6.56 and the

anisotropy is accounted for using the quasi-electrostaticreflection coefficientβ given by

Eq. 5.39.

The parameters of Eq. 5.24 pertaining to the probing tip are its measured vibration ampli-

tudeA = 25nm and the radiusR≈ 35nm, specified by the manufacturer (MikroMasch,

CSC37/Ti-Pt). A good fit to the experimental spectrum A is obtained using the parameter

g = 0.71e0.11i . This is slightly different formg = 0.7e0.06i which was found to reproduce

the near-field spectra of 4H-SiC shown in Fig. 5.16. Since the4H-SiC crystal was cut par-

allel to the c-axis, whereas the 6H-SiC examined here was cutperpendicular to the c-axis,

the small difference in the constantg might actually be needed to compensate for the ap-

proximate treatment of anisotropy effects, discussed in Sect. 5.3. The effective tip length

of 2L = 0.6µm was used, as in Chapter 5.

Finally, the most problematic part of Eq. 5.44, the weighting factorc of the reflected waves,

was set toc0 = 0.2e2π L/λ cos45to account for the illumination under 45° as well as for the

fact that the reference spectrum for the area A was obtained close to, but not exactly on

the boundary between Au film and SiC surface. The resulting spectrum of the region A is

shown in Fig. 7.13 and provides a reasonably good fit to the experiment.
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Figure 7.13: Measured second-harmonic near-field spectra of SiC sample with different
Be2+ implantation doses A-D (points), together with the theoretical signal
spectrum prediction by the monopole model with parameters from table 7.2
(lines).

Fig. 7.13 also contains the the spectra of the regions B-D. They were calculated the same

way as the spectrum A, with two differences. First, the entire pre-factor(1+ crp) in

Eq. 5.44 was replaced by(1+crp)(1+crp,A)/(1+c0 rp,A) to properly account for the nor-

malization procedure described in Sect. 7.3.3 above. The weighting factorc was thereby

set to 0.4e2π L/λ cos45since all data except the reference spectrum assigned to A were ob-

tained far from the Au film. However, due to the small dimensions of areas B and C, the

reflections from adjacent squares probably caused some cross-talk between the spectra B

and C. This effect was neglected here because it could not be precisely quantified.

Second, the parameterx in Eq. 7.3 was different from zero in areas B-D, so that the di-

electric functionεaSiC of amorphous SiC from [196] had to be included. Additionally, a
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variable damping constantγ was used in the dielectric functionεcSiC of crystalline SiC,

as required by Eq. 7.3. The actual values ofx andγ have been determined by numerically

searching for the best fits to the experimental spectra. It should be noted that a simple

linear regression was not applicable in this case because both parameters enter the Eq. 5.24

in a highly non-linear way. Attempts to use automated non-linear regression algorithms

returned values forx andγ which obviously produced worse fit to the data than the values

obtained manually by a trial-and-error procedure. To obtain the best values ofx andγ and

their respective uncertainties by an objective method, a systematic search for the global

minimum of an error function was eventually performed in thetwo-dimensionalx-γ space.

In order to correctly reproduce both the minima and the maxima of the experimental spec-

tra, it was thereby necessary to construct an error functionfe which measures mostly the

relative, rather than the absolute deviation of the calculated from the measured data at each

spectral point. In particular, the following function was used:

fe =

( ∣∣ρ2,exp−ρ2,theo
∣∣∣∣ρ2,exp

∣∣+0.1
∣∣ρ2,max

∣∣
)2

, (7.4)

whereρ2,exp andρ2,theoare, respectively, the experimental and theoretical complex second-

harmonic optical contrast between SiC and Au. A constant equal to 10% of the maximal

amplitude contrast
∣∣ρ2,max

∣∣ in each spectrum was added to the denominator of Eq. 7.4 to

reduce the influence of the large relative error contained inthe experimental points with low

amplitudes. Finally, the results obtained by this procedure are summarized in Table 7.2,

with the error bounds estimated from the points inx-γ space where the error function

fe(x,γ) exceeded its lowest value by more than 50%.

Region γ/cm−1 x

A 6±1 0
B 11±2 0.04±0.01
C 11±3 0.13±0.01
D 15±5 0.20±0.03

Table 7.2: Parametersγ andx in Eq. 7.3 obtained by fitting the prediction of the monopole
model to the near-field spectra of ion-implanted SiC shown inFig. 7.13.

The plausibility of the dielectric function in the from of Eq. 7.3 and the values obtained for

the fit parametersγ andx will be now discussed in more detail. To this end, it has already

been mentioned in Sects. 7.3.1 and 7.4.1 that ion implantation tends to cause point defects,
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and the material becomes amorphous only after enough point defects have accumulated

close to each other. Furthermore, the far-field reflectivityand transmittivity measurements

in [195] indicate that upon implantation of B+ ions (very similar to Be2+ions used in

this work), the pure crystalline SiC is first converted to thedefective, but still crystalline

material, with negligible presence of the amorphous phase.The fraction of the amorphous

SiC in the total volume starts to increase only after the fraction of the defective crystalline

SiC has saturated.
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Figure 7.14: Second-harmonic near-field spectra of the implanted area C modeled by ad-
justing (a) only the damping coefficientγ, or (b) only the amorphization de-
greex.

Such observations are similar to the conclusion that can be made based on the fit parameters

in Table 7.2. In particular, the main difference between theintact area A and the low

implantation dose in area B is the almost doubled dampingγ, accompanied by only 4%

increase in the amorphization degreex. In contrast, the damping increases by only about

15% from B to C and from C to D, whereas the amorphization degree rises by≈ 8% in

each step. This indicates that enough damage has been accumulated between the regions

B and C to bring the damping in the crystalline SiC close to saturation value from which

point on the amorphization degree starts rising more rapidly. However, a sharp separation

between these two phases found in [195] is not observed here.

The necessity of treating the implanted SiC as the mixture ofthe described two compo-

nents is further supported by Fig. 7.14. It displays an attempt to reproduce the measured

spectrum C by adjusting only one parameter. In particular, changing the parameterx while

keepingγ = 6 yields the result shown in Fig. 7.14(a). This model, equivalent to repre-

senting the medium by a mixture of the defect-free crystalline SiC and amorphous SiC,

fails to correctly predict the near-field signal at frequencies below the resonance. Simi-

larly, allowing only the damping of the crystalline SiC to bechanged and settingx = 0, the
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spectra in Fig. 7.14(b) are obtained, falling into disagreement with the experiment at fre-

quencies above the resonance maximum. The correct maximum position, signal amplitude

and phase above and below the resonance are reproduced simultaneously and correctly only

when values close to those listed in Table 7.2 are used. This permits a fairly quantitative

determination of the crystal quality, limited mostly by theaccuracy of the model dielec-

tric function, Eq. 7.3, and the description of the tip-sample near-field interaction given by

Eq. 5.34.7.5 Identi�ation of SiC Polytypes
Near-field optical contrasts due to the different implantedion doses encountered in Sect. 7.4

were large enough for the homodyne detection method to yieldreproducible results. In

this section a more difficult task of identification of two SiCpolytypes is presented. The

polytypes to be distinguished were known to be nitrogen-doped 4H-SiC and 6H-SiC, with

the concentration of N atoms on the order of 1018 per cm3. Due to the relatively high

level of doping, the dielectric function of the two SiC polytypes has to be constructed by

adding the contributions to the susceptibility by both phonon- and plasmon-polaritons. The

resulting expression reads[196]:

ε(ω) = ε∞(1+
ω2

LO−ω2
TO

ω2
TO−ω2− i ω Γ

+
ω2

p

−ω2− i ω γ
). (7.5)

A different set of parameters applies to each polytype, and considering that the anisotropy

has to be accounted for, it yields a total of 24 parameters. The parameters, together with

the values found in the literature are summarized in Table 7.3.

Parameter 6H-SiC‖c 6H-SiC⊥c 4H-SiC‖c 4H-SiC⊥c

ε∞ [196] 6.72 6.56 6.78 6.56
ωTO (cm−1)[78] 788 797 782 797
ωLO (cm−1)[78] 964 970 967 971

Γ (cm−1)[197] 5.5 5.9 6.6 6.6
ωp (cm−1)[197] 120 230 220 275

γ (cm−1)[197] 250 500 450 450

Table 7.3: Values of the parameters in Eq. 7.5 describing theinvestigated 6H and 4H SiC
polytypes, parallel and perpendicular to the crystallographic c-axis.

The main difference between the 6H- and 4H-SiC parameters pertaining to phonon polari-
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tons is the ca. 4cm−1 shift of theωTO andωLO frequencies for electric field oscillations

parallel to the c-axis. Perpendicular to the c-axis, theωTO andωLO frequencies are almost

identical, which is not surprising since the structure of the two polytypes differs only along

the c-axis. The damping coefficientsΓ were taken from [197], where they were obtained

as fit parameters to Raman scattering measurements on doped 4H- and 6H-SiC crystals.

On the plasmon side, the most important difference between the polytypes is the higher

plasma frequencyωp for the 4H polytype. This difference can be traced back to thelower

effective electron mass parallel to c-axis in 4H-SiC, foundto bem‖,4H = 0.48m0, compared

to m‖,6H = 1.4m0 in 6H-SiC. The estimate for the plasma frequencyωp =
√

4πnNe2/me

was obtained from the the dopant concentrationnN = 1.7×1018cm−3 which was found

to be in the best agreement with the experiment, as will be explained later. The plasmon

dampingγ was then interpolated between the values given for different doping levels in

[197] to the same valuenN = 1.7×1018cm−3.

Although the plasmon properties differ significantly between the polytypes, the plasma

frequency (≈ 250cm−1) lies far below the investigated frequency range between 900 and

950cm−1. The plasmon contribution to the dielectric function is thus small compared to

the contribution by phonon polaritons. As a consequence, only weak contrasts between the

polytypes are expected in the region of the near-field phonon-polariton resonance, requir-

ing the use of the pseudo-heterodyne detection method (Sect. 6.4.2) to obtain reproducible

results. Otherwise, spurious contrasts can be observed, asshown in Sect. 6.5.7.5.1 Near-�eld Optial Images of 6H/4H Polytype Transition
Near-field images of the transition between 4H-SiC and 6H-SiC polytypes obtained atλ =

10.70µm (ω = 935cm−1) andλ = 10.55µm (ω = 948cm−1) using the pseudo-heterodyne

detection method are shown in Fig. 7.15. No contrast betweenpolytypes in the optical

amplitude image atω = 935cm−1 is observable, but a small phase contrast nevertheless

exists at this wavelength. The image taken atω = 948cm−1 reveals both a weak but

unambiguous contrast in the near-field signal amplitude anda larger contrast in the signal

phase. This indicates that the polytypes can indeed be distinguished by purely optical

means. For the purpose of later identification, the polytypeto the left of the boundary

will be denoted by A, and the polytype to the right of the boundary by B, as shown in

Fig. 7.15(b).

For comparison, the simultaneously obtained topography ofthe sample is shown in Fig. 7.16,
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(a)

(b)

Figure 7.15: Near-field optical images of 4H-6H SiC polytypetransition. Shown are the
near-field signal amplitudes2 (left) and phaseϕ2 (right) at (a) 935cm−1 and
(b) 948cm−1. Image size: 9µm×9µm.

(a) (b)

Figure 7.16: (a) Topography and (b) SEM image of a 4H-6H SiC polytype transition.

together with a separately recorded scanning electron micrograph of the same area. The

topography image displays a clearly visible height step across the boundary between the

two polytypes, running from upper left towards lower right corner of the image. This

step is most likely generated in the polishing process due toslightly different hardness

of the polytypes. The elevated area at the bottom of the images in Fig. 7.16 is the Au

film evaporated onto the SiC crystal surface for the purpose of signal normalization (see
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Sect. 2.5.1). The same highly conductive Au surface is easily distinguished in the SEM

image in Fig. 7.16(b). A slight contrast between the two polytypes is also present in the

SEM image. However, the identification of the polytypes A andB based on either the

topography or the SEM image is not possible without some further information on the

properties of each of the two polytypes. Furthermore, without knowing that the topogra-

phy and SEM images actually contain the 4H-SiC and 6H-SiC polytypes, the materials

imaged in Fig. 7.16 (a) and (b) could not be identified at all.7.5.2 Spetral Identi�ation of SiC Polytypes
It will be shown now that the infrared near-field spectroscopy enables an unambiguous

identification of the polytypes A and B based on their IR dielectric function given by

Eq. 7.5 and parameters from Table 7.3. To this end the near-field spectra of the polytypes

A (disks) and B (squares) from the polytype boundary in Fig. 7.16 are shown in Fig. 7.17,

together with the theoretical near-field spectrum prediction for 6H-SiC (full line) and 4H-

SiC (dashed line). Since the full line coincides with disks and dashed line with squares in

Fig. 7.17, the polytype marked as A in Fig. 7.16 can clearly beidentified as 6H-SiC and the

polytype B as 4H-SiC.
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Figure 7.17: Second-harmonic near-field spectra of two different doped SiC polytypes.
Points represent the measured values, whereas the full and dashed line rep-
resent the monopole model prediction for near-field signal spectra of doped
(n≈ 1018cm−3) 6H-SiC and 4H-SiC respectively.

It should be noted here that the excellent agreement betweenthe experimentally obtained

spectra and the theoretical prediction based on the monopole model (Chapter 5) was ob-

tained by adjusting the dopant concentrationnN to provide the best fit to the experiment.

The adjustment ofnN to fit the experimental spectra was not only justified but alsoneces-

sary because the exact dopant concentration was only very approximately known to be on
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the order of 1018cm−3. Furthermore, the concentration of free carriers is not exactly equal

to the dopant concentration, anyway.

Even if nN was not know precisely, the distinction between 6H and 4H SiCpolytypes

would be possible since the 4H-SiC spectrum appears shiftedto higher frequencies and

has a lower maximum than the 6H-SiC spectrum regardless of the plasma frequencyωp

determined bynN. Furthermore, the same conclusion is reached if the dipole model is used

to predict the near-field signal [67]. However, the monopolemodel allows a more precise

characterization of the sample, including the determination of an otherwise very loosely

specified parameternN. Provided that the results of the monopole model are confirmed

by future studies, this model could enable the identification of components contained in

a sample with nanometer-scale resolution, even without theprior information on what the

components might be.

This and some other possible applications of the findings presented in this chapter will be

discussed in the next section.7.6 Appliations
The results presented in this chapter demonstrate the potential of near-field infrared spec-

troscopy as a quantitative tool for investigation of crystal structure with a nanoscale reso-

lution, limited only by the probing tip radius. The best attainable resolution thus surpasses

the standard (far-field) infrared spectroscopy by roughly three orders of magnitude without

a loss in the sensitivity to chemical and structural properties of the sample. As stated in

Sect. 7.4, the near-field spectroscopy also bears the potential to exceed the sensitivity of

the far-field IR spectroscopy since the near-field interaction between the probing tip and

a crystalline sample exhibits sharper resonances then the Reststrahlen bands observable

in far-field spectroscopy. This effect can be used e.g. to mapthe implantation profiles

of donor or acceptor atoms in semiconductors. This is particularly important for SiC,

where ion implantation is the only viable method of patterned doping required for fabrica-

tion of electronic devices. The diffusion-based doping process, standard in Si electronics

fabrication, cannot be applied to SiC because of the practically non-existent diffusion at

temperatures below 1800C [198].

The ability to determine the crystal structure on the nanometer scale also enables the map-

ping of the crystal quality, i.e. defects in the crystal structure [67]. Again, this possibility is
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especially interesting in conjunction with SiC whose widespread usage in the high-power

electronic circuits is still held back by the insufficient crystal quality [188].

As a more exotic example, it has been suggested that ion-implanted SiC can serve as an

extraordinary data storage medium offering essentially unlimited lifetimes and the ability

to withstand extreme environmental conditions [199]. In that case the data storage density

corresponding to the 1µm×1µm squares in Fig. 7.9 would equal 100Mbit/cm2, which is

roughly equal to the density of bits on a compact disc (CD). The resolution observed in

Fig. 7.9 can be significantly improved by implanting heavierions instead of Be2+. Heavier

ions exhibit less straggling below the surface of SiC crystal and thus permit much sharper

structures to be drawn. As an example, Fig. 7.18(b) containsa near-field optical image of

SiC crystal patterned by implantation of 50keV Ga2+ ions, with squares down to 200 nm in

size are clearly distinguishable. Squares in Fig. 7.18 smaller than 200nm cannot be clearly

resolved primarily because of the unwanted contamination of the SiC crystal surface by

stray ions produced by blanking of the ion beam as it is scanned over an unimplanted area

between two implanted squares.

(a) (b)

Figure 7.18: (a) Implantation pattern and (b) s-SNOM imagesof 50keV Ga+ FIB-
implanted SiC crystal surface. The implantation dose was about 5×
1014ions/cm2.

To prove that the resolution limit in Fig. 7.18(b) is a technical, rather than a fundamental

one, a line pattern implanted by FIB in SiC and imaged in s-SNOM is shown in Fig. 7.19.

No beam blanking is performed within one line in Fig. 7.19, thereby significantly reduc-

ing the contamination of the unimplanted areas and making the lines 100nm wide clearly
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visible. 50nm lines can also be resolved after a slight contrast enhancement, as shown

in Fig. 7.19(b). The lateral straggle of 50keV Ga+ ions amounts to about 20 nm, thus

preventing even smaller structures to be created.

(a) (b)

Figure 7.19: s-SNOM images of a line pattern created in a N-doped SiC crystal by FIB
implantation of 50 keV Ga+ions. Stripes 200 nm and 100 nm wide are easily
resolved in part (a). With the aid of the contrast enhancement in the lower
right corner of the part (b), 50 nm wide stripes are also revealed. The blurring
of the implanted stripes is caused by the≈ 20nm lateral straggle of Ga+ ions.

Considering that the s-SNOM resolution has been repeatedlyproven to be limited only by

the probing tip radius and can routinely reach below 20 nm [44–46], it can be inferred that

even the 50-nm structures do not push the s-SNOM resolution to its limits. Furthermore, it

was shown in [75] that objects with sizes as small as 1/3 of the probing tip radius can be

detected and imaged by s-SNOM. Consequently, it should be possible to investigate down

to 5-nm defects or irregularities in engineered structuresof sizes as small as 20 nm using

commercially available metal-coated probes. This is by no means an end because it has

already been shown that electrochemically etched metal probes withR≤ 5 nm can be pro-

duced and successfully used in s-SNOM [74], providing a fourfold resolution improvement

over the metal-coated tips.

It is important to note that the same resolution and sensitivity can be achieved in the entire

spectrum from the visible to the terahertz frequencies. Thevisible and near-IR wavelengths

are thereby useful for identification of metals, the mid-IR range for identification of polar

semiconductors or insulators, and the THz frequencies for measuring the carrier density in

doped semiconductors. Considering that this entire range of wavelengths can be combined
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in a single instrument, the scattering-type near-field optical microscopy may soon become

an indispensable tool for the analysis of materials and devices on the nanometer scale.
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